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Abstract

In this paper, we examine the efficacy of Renewable Portfolio Standards in reducing carbon

emissions. In addition, we set out to answer whether the composition of carbon emissions by

sector changes in response to a higher RPS. Using a panel of state-level data from 1990 to

2017, we use regression analysis to estimate the effect of an higher RPS on carbon emissions

by sector. The analysis uses fixed effects to control for time and state specific effects while

including explanatory variables that control for meteorological, demographic, and economic

factors. Results offer evidence that renewable portfolio standards significantly reduce state-

level carbon emissions as well as sector-specific carbon emissions, albeit, with the exception

of industrial carbon emissions.
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1. Introduction

Today we are facing a rapidly warming climate. Global temperatures are increasing, as evi-

dence by the last seven years being the warmest in recent history, and 2016 and 2020 being

tied for the warmest years on record (NASA, 2009). The planet has been warming at an

unprecedented rate since the early 1900s, mainly due to increased human population and pro-

ductivity (NASA, 2009). Extreme weather events, decreased snow cover, and rising oceans

are just a few ways climate change is impacting our planet (NASA, 2009). Such changes have

severe adverse ripple effects through environmental, social and economic systems. Nations

and organizations worldwide are working to address climate change; however, methods for

managing climate change vary widely in technological and political approaches. What can be

certain is that countries need to increase the speed of the ongoing energy transition to cleaner

energy sources. For the world to avoid the most severe consequences of climate change, ef-

fective policies that transition energy production away from fossil fuels is paramount. One

type of policy instrument adopted by many U.S. states is a renewable portfolio standard

(RPS), which is a state-level regulation that mandates a minimum amount for which en-

ergy on the grid has to come from renewable energy sources (NCSL, 2021). Managing how

the U.S. produces power is a natural focus for climate change mitigation efforts, given that

electric power production is the largest producer of greenhouse gas (GHG) emissions in the

U.S. (CRS, 2021); see figure 1 on on page 5. My research aims to answer the following basic

efficacy question: Are RPSs effective in reducing carbon emissions? To provide evidence for

this question, we collect data for U.S. states for years 1990 to 2017 to estimate the impact

that an RPS has on emissions. The analysis considers aggregate emissions as well as sector-

specific emissions, while also taking advantage of the panel nature of the data to control for

unobserved heterogeneity. Results indicate that an RPS is effective in reducing state-level

emissions, specifically an one percentage point increase in RPS is associated with a 47 ton

reduction in total US carbon emissions.
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Figure 1: GHG Emissions

2. Background

2.1. Background: RPS Overview & History

In the United States, power plants are responsible for approximately 40 percent of the

nation’s carbon dioxide emissions (Yin and Powers, 2010). Coal has provided reliable base

load power for more than a century, yet U.S. policy is making it clear that a transition away

from coal-fired power plants is a top priority. Thus, renewables are beginning to take the

place of traditional power sources and subsequently comprising a larger share of the national

grid portfolio. Renewable energy development, however, is not without its complications,

and policy solutions such as RPS can both help and hinder the energy transition.
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As a policy, an RPS can take different forms at the state level, which causes a high degree

of variation in the details such as deadlines, targets, trading mechanisms and compliance

measures. Yet, this flexibility has in part been responsible for the policies popularity (Eastin,

2014). A RPS requirement is typically defined in terms of what proportion of the state’s

utilities power delivered must come from renewable sources (i.e. 100% of the energy sold in

from Colorado utilities companies must be from renewable energy by 2050). There are a few

states, such as Texas and Iowa, who have defined the RPS minimum to be the proportion of

power generating capacity (NCSL, 2021). As per the EIA’s definition of generation capacity,

“electricity generation capacity is the maximum electric output an electricity generator can

produce under specific conditions” (EIA, 2020). While “Electricity generation is the amount

of electricity a generator produces during a specific period of time” (EIA, 2020). Moreover,

generation is just one measure of production, hence, production and generation will be used

interchangeably throughout this paper. Additional ways in which state RPS policies vary

include: whether or not the RPS is mandatory, the date at which the RPS goal is to be

achieved, whether the RPS focuses on power generation versus power generation capacity,

and whether or not targets can be met by trading RPS credits (known as Renewable Energy

Credits (RECs) across state lines).

In addition to policy variability, there is a high degree of variability in the implemen-

tation of RPS. Some states impose additional restrictions, such as requirement of certain

types of renewables (such as solar), permitting the allowance of additional credits for select

industries, and separate standards for select utility companies (such as Xcel Energy in Min-

nesota) (NCSL, 2021).Though, without a doubt the most controversial of RPS restrictions

are in-state generation requirements, which occur in 5 different forms, including Distributed

Generation Carve-Outs, Solar Carve-Outs, In-state minimums, In-state credit multipliers

and In-state by defaults; see table 1 below.
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Table 1: In State Generation requirements (NCCETC, 2014)

All state-level RPS policies can be classified by the timeframe for which the RPS is to

be achieved. State RPSs are classified as “Active”, “Expired”, “Goal” oriented, or none of

the above. An Active RPS means that the state in question is still in pursuit of reaching a

standard by a set date, in addition to being subject to fines if the standard is not met by

the set target date. Alternatively, an Expired RPS means a state has satisfied a previous

standard and has not set a new standard. While a Renewable Portfolio Goal (RPG) means

that the state has laid out voluntary targets that are not enforced by fines in the event of

non-completion. There are 12 states that have never had a renewable portfolio policy of any

kind, see the table below. Throughout this paper, we will exclude Hawaii, D.C. and Alaska

and use the period from 1990 to 2017. Virginia will also be classified as “no RPS” as its

policy only passed in 2020 and is outside of the range of our data. Thus, as of 2017, there are

25 states that have active RPS’s, 7 states with expired RPS, three states that have RPG’s

and 12 states that have never had any RPS or RPG; see table 2 below.
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Table 2: RPS Classification (excluding AK and HI) (NCSL, 2021)

2.2. Background: REC Overview

A Renewable Energy Certificate (REC) is equal to one MWh of electricity regardless of

where it was produced (with the only exceptions in Arizona and Nevada where it is defined

in kWh) (Hamrin, 2014). RECs serve a function of accounting and tracking renewable

energy as it flows onto the grid, additionally RECs serve to distinguish renewable from

nonrenewable energy (Hamrin, 2014).The definition of RECs (like RPS) differs slightly by

state, though Hamrin (2014) reports that these differences are “small enough that interstate

renewable energy markets have been able to operate smoothly and seamlessly” (Hamrin,

2014).The certification of RECs to generators of renewable power is a necessary part of the

RPS implementation process (NCSL, 2021). As mentioned, RPS is a quantity-based policy

instrument, using RECs as a “currency” for trade. More specifically, RECs are a market-

based instrument of currency that certifies the bearer is in ownership of one MWh of certified

renewable energy (Hamrin, 2014).The RECs are created when the power provider feeds some

amount of certified renewable energy onto the grid, whereby the associated REC can then

be sold. For example, the REC can be sold to a polluting firm as a carbon tax credit to
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offset their emissions or can be used as a credit against a utility’s own power usage (Hamrin,

2014). Additionally, while REC can be traded in most states, some states have rules against

REC trade. These states view in-state renewable energy generation differently than owning

an REC that represents generation in other state, and these states often require in-state

renewable energy generation to meet RPS requirements. The rational for restricting REC

trade and creating in-state renewable generation requirements, is that nascent renewable

industries may be better supported. On the other hand, restricting REC trade (i.e., requiring

in-state generation) spurs greater in-state development in green energy sector. However, for

renewable energy generation, the in-state requirement may increase the marginal cost of

renewable energy generation for states not well positioned to generate renewable energy.

Therefore, the potential co-benefits of economic development likely come at a cost. We

explore this issue more in the literature review.

An additional RPS design issue is that some RECs are bundled while others are unbun-

dled. For a REC to be unbundled means that the physical electricity can be sold separately

from it. REC like a currency, serves the purpose of being fungible, bundling an REC, how-

ever, restricts that same function of fungibility. Hence, for the REC to be unbundled it does

not impose the additional hurdle of delivering the same physical unit of energy purchased to

the energy system of the utility company from which it was bought (Smith, 2010).

This Space Is Intentionally Left Blank
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Table 3: Bundled and Unbundled RPS States (Smith, 2010)

There are only 4 states with an RPS where RECs are strictly bundled, while 24 states

allow RECs to be unbundled; see table 3 above (Smith, 2010). Unbundled RECs significantly

ease the transmission of electricity being bought and sold across grids as well as minimizing

further complexity in the electricity market (Smith, 2010) Unbundled RECs also reduce

wastage by reducing the transmission distance. Thus, RECs reduce the line losses over very

long distances as we can’t yet efficiently store large amounts of energy (Smith, 2010).The

EIA (Energy Information Administration) estimates that between 2016 and 2020, 5% of

total electricity transmitted and distributed was lost throughout the United States (EIA,

2017). To summarize, unbundled RECs give the renewable energy generators the flexibility

of being able to feed power into the local grid and sell the REC independently to utilities.

3. Lit Review

3.1. Lit Review: Criticisms Of RPS

Since the 1990’s Renewable Portfolio Standards (RPSs) have become a mainstay policy for

US states to bolster their production of renewable electricity. Despite this, economic theory

shows that RPS are mired by inefficiencies and may not be the best suited policy for miti-

gating carbon emission (Lyo, 2016). In this vein, scholars have questioned the efficiency and

effectiveness of RPS’s in reducing carbon emissions at the state level (Yin and Powers, 2010).

In one previous attempt to measure the effectiveness of RPS in reducing emissions, Bushnell
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et al. remarked “RPS may be one of the least efficient means of achieving greenhouse gas

emission reductions, it does not reward generation from non-renewable sources of low carbon

power, and rewards energy conservation only weakly” (Bushnell et al., 2007, p. 3). While

numerous simulated models suggest that RPS’s underperform in reducing carbon emissions

relative to other available polices, RPS have only expanded in reach (Fischer and Newell,

2008; Palmer and Burtraw, 2005). And while RPS is prevalent throughout the US, with

many state RPSs sharing core regulations, they vary dramatically in design across states.

Design differences have been carefully detailed by Berry and Jaccard (2001); Wiser et

al., (2005); Wiser et al., (2007); and Wiser and Barbose (2008) (Berry and Jaccard, 2001;

Wiser et al., 2005, 2007; Wiser and Barbose, 2008). One critical difference between states is

the degree of state-specific regulations regarding inter-state REC trading. The consequences

include small state specific markets which can make large scale renewable energy development

difficult with regional markets tending to lack price transparency. The results are inefficient

energy markets at the cost of the utility ratepayers (Mack et al., 2011).

Not only do in-state generation requirements hinder the efficiency of regional or national

REC markets, but in-state requirements hinder US renewable energy developers as well

(Mack et al., 2011). Still, RECs can provide energy developers with a supplemental revenue

stream and increase the ability to finance renewable energy projects (Mack et al., 2011).

Some states have attempted to limit RECs such that they can only be produced in-state,

however, this practice has been challenged legally (Elefant and Holt, 2011). While the

lawsuit was settled outside of court, we can expect future resistance from utility companies

who undoubtedly will continue with legal challenges.

3.2. Lit Review: Renewable Energy Capacity, Generation Electricity Prices

Shrimali and Kniefel (2012) find that total retail electricity sales was negatively correlated

with renewable energy capacity at the state level (Shrimali and Kniefel, 2011). Their finding
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supports RPS research concerning electricity prices, given that a greater amount of renew-

able as a percent of total energy generation has been shown to increase average electricity

prices and subsequently drop demand for electricity. While some outliers (under very spe-

cific conditions) support the opposite conclusion (Fischer and Newell, 2008), most papers

find RPS to increase electricity prices and decrease total carbon emissions (Eastin, 2014;

Greenstone et al., 2019; Upton Jr and Snyder, 2017).

Yin and Powers (2010) report evidence that a RPS schedule for renewable generation is

positively correlated with the percentage renewable energy capacity (Yin and Powers, 2010).

In addition, they find that allowing for the free trade of REC’s significantly weakened the

impact of RPS’s on the development of renewable energy capacity (Yin and Powers, 2010).

It should be noted, the “capacity” is not synonymous with “generation”; capacity is the

amount of generation possible, while generation refers to energy actually produced. In a

similar study, Shrimali and Kniefel (2011) conducted an analysis focusing on renewable gen-

eration (Shrimali and Kniefel, 2011). They found that a RPS requirement had a significant

positive effect on the proportion of renewable energy generation (Shrimali and Kniefel, 2011).

Similarly, Carley (2011) finds RPS to have a significant and positive effect on the share of

renewable energy-based electricity generated (Carley, 2011). Carley (2011) also reported

that states with RPS have a higher renewable energy share compared with non-RPS states

(Carley, 2011) - a result further supported by findings of Delmas and Monetes-Sacho (2011)

(Carley, 2011; Delmas and Montes-Sancho, 2011). The result of Carley (2011), Delmas and

Monetes-Sacho (2011) may seem intuitive, but it is important in forming consensus around

the efficacy of RPS.

3.3. Lit Review: Reasons For Adopting

Many scholars have examined why states choose to adopt a RPS, with determinants ranging

from economic development (Matisoff, 2008), regional diffusion (Berry, 1994; Chandler, 2009)
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and ideology (Carley and Miller, 2012; Huang et al., 2007; Lyo, 2016). Despite the frequency

of which RPS’s have been studied, a lack of data and subsequent noisy variables continue

to be cited as being problematic in the search for accurate estimates when studying RPS’s.

Thus, for methodological convenience, many scholars have treated RPS policies as identical

or have characterized the differences among them in a more simplistic manner, again subject

to constraints of what data is available (Yin and Powers, 2010). Meanwhile, some scholars

have focused on policy design features often with the determination that policy specifications

are best predictors for RPS’s success (Carley, 2011; Yin and Powers, 2010). Seeking to

incorporate policy heterogeneity in RPS state policy is a noble goal, yet, implementing the

classification of RPS polices into a workable framework presents problems and opportunities

for criticism. One such criticism is the potential inability to compare or generalize findings

due to the likelihood of classifications differing from scholar to scholar. More accurate

measurement of RPS effectiveness may not come until more data is available (Eastin, 2014).

3.4. Lit Review: Politics & RPS Efficacy

From a political standpoint, the RPS has been particularly popular with Iowa implementing

the first RPS in 1982. Following Iowa, there was a growing surge in RPS policies across

several states from the 1990s into the 2000’s (NCSL, 2021). During this time, the carbon

intensity of US has decreased by about 50 percent according to the US Energy Information

Administration (EIA, 2016). A question therefore looms on a connection between decreasing

carbon emissions and the introduction of RPS. Theory suggests that an increase in renewable

energy requirements (i.e., RPS schedules) will decrease the level of carbon emission and

increase the share of energy generated from renewable energy resources (Sekar and Sohngen,

2014). Due to the higher cost of clean energy alternates, more stringent RPS schedules

should increase retail prices and subsequently reduce the demand for energy consumption

and corresponding carbon emissions. In accordance with the theory, Greenstone et al.(2019)

find that the introduction of a RPS leads to a moderate reduction of carbon emissions, in
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addition to significantly increasing average energy prices (Greenstone et al., 2019). This

finding is corroborated by Upton and Snyder (2017) via their use a synthetic difference-in-

difference model with synthetic controls whereby they find that a RPS substantially increases

electricity prices and modestly reduces emissions (Upton Jr and Snyder, 2017).

3.5. Lit Review: RPS Efficacy For Reducing Carbon Emissions

Two similar studies have focused on the efficacy of of RPSs to reduce carbon emissions.

Sekar and Sohngen (2014) employ a panel model to examine how the composition of a state’s

economy explains carbon emissions (Sekar and Sohngen, 2014). They find that states that

are more economically dependent of mining and healthcare are more carbon intensive than

states with a large information sector (Sekar and Sohngen, 2014). Additionally their models

seem to suggest somewhat paradoxically, that more population dense areas are less carbon

intensive than states with low population densities, which may primarily be a result of an

areas GDP, not their carbon pollution activity (Sekar and Sohngen, 2014). In agreement

with the literature, they also find that carbon intensity rises with summer temperatures and

falls with winter temperatures, though the generic measure for carbon emissions, not divided

by GDP, may look differently (Sekar and Sohngen, 2014). A further distinction from Sekar

Sohngen (2014) relative to our paper, is the measure for temperature related energy demand

(Sekar and Sohngen, 2014). From Sekar Sohngen’s 2014 paper, they measure temperature

with a non-time-varying monthly 29-year average unsuitable for modeling with panel data

(Sekar and Sohngen, 2014). A better measure for this purpose would be Heating Degree Days

(HDD) and Cooling Degree Days (CDD). Still, with the inclusion of regional, demographic

and economic controls, Sekar and Sohngen (2014) find the states that have implemented a

RPS consistently have lower carbon intensity (Sekar and Sohngen, 2014). In a related paper,

Greenstone et al. (2019) estimate a difference-in-difference model and find CO2 emissions

decline by 71-250 million metric tons across 29 states over the 7 years after passing an RPS

(Greenstone et al., 2019). Other studies however illustrate the complication of RPS’s varying
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effectiveness at the state level (Wiser et al., 2022).

Sekar and Sohngen (2014) examines the compositions of GDP by sector and estimate the

impact of these subsections of carbon intensity with the inclusion of RPS yearly percentage

values (Sekar and Sohngen, 2014). In addition to the intuitive result that RPS reducing

carbon intensity, they found that the introduction of RPS could increase emissions for certain

states by changing the relative industry composition of GDP, say from being heavily service

sector dominant to commercial (Sekar and Sohngen, 2014).While Sekar and Sohngen (2014)

consider GDP by sector in explaining total carbon emissions in combination with RPS, there

has been no study to my knowledge that has looked at sector-specific carbon emissions as the

dependent variables in a series of models. Hence, for our contribution to the literature we

use total carbon emissions as our dependent variable with separate models for each subset of

carbon emissions by sector, inducing commercial, residential, transportation, and industrial

carbon emissions. Also, as opposed to Sekar and Sohngen (2014), we are using total carbon

emissions not carbon intensity. This choice of variable offers new insights to the existing

literature as total carbon emissions is an appropriate metric for RPS efficacy. Moreover, as

the World Resources Institute reports, carbon intensity is a less transparent measure and can

lead to increased environmental uncertainty when used in the place of total carbon emission

for regulatory targets (Baumert et al., 2005). Thus, for this paper, we are most interested

in a RPS’s impact on total carbon emissions, as well as sector-specific carbon emissions.

This Space Is Intentionally Left Blank
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4. Methodology

4.1. Methodology: Data

In the absence of comprehensive data on RPS research, we constructed a new data set for this

study. The panel of annual data covered 48 U.S. states over 27 years (1970-2017). Hawaii

and Alaska are excluded due to data limitations and non-conformity. Much of the data

was collected from United States Energy information administration (EIA), but economic

data was pulled from the Bureau of Economic Analysis (BEA) and meteorological data was

collected from the National Centers for environmental Information (NOAA); see table 4

below for definitions and basic summary statistics.

Table 4: Variable Definitions and Summary Statistics

EIA provided data on energy consumption (EIA, 2022c), energy generation (EIA, 2022b),

and state average retail electricity prices (EIA, 2022a). BEA provided annual GDP by

state with the BEA code SAGDP. The BEA, however, changed there measure for GDP

and subsequently their codes in the year 1997, with the code SAGDPN measuring GDP

pre-1997 and SAGDPS measuring GDP post-1997. Thus for the purposes of our paper we

combined both SAGDPN and SAGDPS classifications of GDP to get our 1990-2017 range

of values (BEA, 2022). NOAA provided data on Heating Degree Days and Cooling Degree
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Days (NOAA, 2022). U.S. state population data was retrieved state by state from Federal

Reserve Economic Data (FRED) (FRED, 2022), whereby population density was manually

calculated using state square mile measures from U.S. Census Bureau (Bureau, 2010). For the

RPS schedules I retrieved data from Lawrence Berkeley National Laboratory—i.e., Berkeley

Lab (Lab, 2021). For my RPS dummy variables I used the information available at the

National Conference of State Legislatures (NCSL, 2021). For vehicle miles driven per capita,

I retrieved data from the Eno Canter for Transportation (Eno, 2019a,b).

Figure 2: Imputed RPS percentage targets

For our control variable for service sectors of the economy we have constructed the vari-

able Ret.F in.Gov which is the percentage aggregate of Retail as proportion of total GDP,

Finance as a proportion of total GDP and Government administration as a proportion of to-

tal GDP. The underlying data for which we combined to create Ret.F in.Gov we are sourced

from the BEA (BEA, 2022). Finally, for the most central variable in our paper, we linearly

imputed RPS targets using the start and end dates provided from NCSL, see figure 2 above
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for a visual representation (NCSL, 2021).

4.2. Methodology: Models

Data collection yielded a balanced panel of annual state-level data over the 27 year period.

We take advantage of the panel nature of the data to control for possible unobserved het-

erogeneity. In the decision to use fixed effects and random effects, we are assuming the

presence of unobserved determinants, which can be controlled with fixed or random effects

specifications. In deciding whether to use a random effect or fixed effects model, we per-

formed Hausman tests for each model. The null hypothesis for the Hausman test is that the

random effects estimator is consistent, while the alternative hypothesis is that Hausman test

is not consistent. From the Hausman test, we find that we reject the null hypothesis that

the random effects estimator is consistent, which directs us to use the fixed effects estimator

(see appendix for more details). In other words, we are concluding that not all unobservable

heterogeneity is accounted for, which subsequently results in a significant difference in the

fixed effect and random effect estimators. Meanwhile, the fixed effects estimator controls for

time-invariant heterogeneity by time-demeaning the variables, yet, in doing so we also lose

degrees of freedom. One possible explanation for the presence of unobservable heterogeneity

could be that we lack a variable for measuring the renewable energy potential of states which

may not be reflected in our current models and would thereby biases our estimates. In the

event the estimates from fixed effects and random effects were not significantly different, we

have chosen to use random effects for the benefits of producing lower standard errors. We

have 5 such fixed effects model each only changing with respect to the dependent variable.

From our five models the independent variables are denoted by double dots to signify the

time demeaned variables of our fixed effects models; see table 5 on page 19 below.
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Table 5: Fixed Effect Models for Subsection Carbon Pollution

We also retrieved the between and within variation to get insights on our panel model.

Looking at table 6 on page 19 and table 7 on page 20, we observe how variation differs from

between states and variation within state for each of our numerical variables.

Table 6: Between Variation

19



For example, by comparing the standard deviation from TotalCO2 with both between

variation and within variation, we see that there is significantly more variation between

states, than variation within states across our 27 year panel. This pattern of a larger between

variation is consistent for most of our variables. It is therefore, not surprising that that we

reject our Hausman test and opt to used fixed effect estimation as opposed to random effects.

If our within variation had been consistently higher than between variation it would be more

likely we would have failed to reject the Hausman test that random effects is consistent and

ultimately used random effects estimation resulting in smaller standard errors.

Table 7: Within Variation

Given that our Hausman tests for all five of our models were rejected, we used fixed effect

estimation for all our models. Additionally, HAC standard errors are used to account for

heteroskedasticity and autocorrelation. In the Total model, results indicate that the coeffi-

cents for VMT, HDD, Population, VMT and Imputed RPS are highly statically significant.

Further, we find that CDD weakly explains the variation in Total carbon emissions. As

expected, estimates indicate that higher RPS targets lead to large reductions of total carbon

emissions within our sample. Specifically, for every one percentage point increase in RPS, we

see a 47-ton reduction in carbon emissions on average. The other three significant variables

show only a small impact of total carbon emissions. Overall, our results from Model 1 -
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TotalCO2 - correspond to findings in the literature with the addition of VMT, which to our

knowledge, hasn’t been used in panel data models for explaining RPS impact on carbon

emissions.

Table 8: Fixed Effect Models, and Robustness Checks

The overall story as seen from inspecting table 8 on page 21, is that RPS has the largest

effect size in comparison to our other independent variables followed by Heating Degree Days,
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Cooling Degree Days, Vehicle Miles Travelled, and then Population. The general order of

magnitude in our coefficients for our independent variables is unsurprising, except possibly

in the instance of Vehicles Miles Travelled. When inspecting the coefficients of Vehicles

Miles Travelled, we find that its units are comparatively small in reference to our other

independent variables. All the while, Transportation makes up the second largest contributor

in greenhouse gases in the Unites States, as seen from figure 1 on page 5.

For RPS – our independent variable of interest – we intuitively see highly statistically

significant and negative coefficients for three of our four carbon subsection models (RES,

TRAN , COMM), with Transportation having the largest effect size, followed by Residential

and Commercial. For example, for every one percentage point increase in RPS, we see a 9 ton

reduction in transportation related carbon emissions at the state level. An interesting result

from our models is the lack of statistical significance for RPS in our model for Industrial

carbon; possibly suggesting that there may something structurally different about industrial

carbon emissions. Conversely, it is also possible we are not controlling for all the appropriate

effects to be able to a see significant coefficient for Industrial carbon, thus, potentially running

into omitted variable bias.

For our next independent variable of interest, we see that our coefficients for Heating

Degree Days is strongly statistically significant and positive for Total, Residential and Com-

mercial, in that order of magnitude. Yet, there arises the question of why the coefficients

for Transportation and Industrial are not significant. Referring to Map 1 and Map 2 (see

appendix), you will see the northeast region featured more prominently in Residential and

Commercial carbon emissions; indicating that higher carbon can be attributed to the un-

derlying characteristic of those states. While we notice statistically significant coefficients

for Heating degree days, in juxtaposition, Cooling Degree Days has only mildly significant

coefficients and only for Residential Carbon. The relative findings of both Heating Degree

Days and Cooling Degree Days, appear to suggest that Heating demand is the more dom-
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inant contributor of carbon emissions, with both larger coefficients and larger statistical

significance.

For completeness, Population and GDP per capita acted as control variables across our

five models. In each of our five model outputs, Population and GDP per capita effect

sizes were either very small or statistically insignificant. We can say Population and GDP

per capita presented as control variables, given that with stripped down models we find

Population and GDP per capita to give larger and highly statistically significant coefficients,

which is expected. For more interpretations model by model of our fixed effects estimation,

see appendix.

5. Conclusion

If more data were available, we might be better able to control for unobserved effects to

better test all compositions of carbon emissions. Had we already done so, we might have

been able to verify as Sekar Sohngen (2014) hypothesized, that RPS might decrease total

carbon emissions with mixed directional effects across compositions of carbon by sector.

Instead, we found that RPS reduced carbon emission in four out of our five models where

Imputed RPS was significant. In addition, heating demand appears to the dominant player

in carbon emissions as opposed to cooling demand. One possible limitation of our data is

the necessary approximation of using linear imputation for the RPS schedules in order to

build a parsimonious variable.
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Figure 3: Region 1
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Figure 4: Region 2

Figure 5: Region 3
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Figure 6: Region 4

Figure 7: Region 5
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Figure 8: Region 6

Figure 9: Region 7
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Figure 10: Region 8
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Table 9: correlation matrix
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Figure 11: Individual spefic effect maps
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Table 10: Hausman Test for TotalCO2 Model

χ2 df p-value

498.48 7 ¡ 0.01

The null hypothesis for the Hausman test is that the random effects estimator is consistent.

Meanwhile, the alternative hypothesis is that the fixed effect estimator and the random

effects estimator are statistically different. For the TotalCO2 model, we reject the

hypothesis and subsequently use fixed effect estimation as opposed to random effects. The

regressors in our test are VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with

TotalCO2 as our dependent variable.

Table 11: Hausman Test for RESCO2 Model

χ2 df p-value

1590.3 7 ¡ 0.01

For RESCO2 model, we reject the hypothesis and subsequently use fixed effect estimation

as opposed to random effects. The regressors in our test are VMT , HDD, CDD, Pop,

GDP.per.cap, and ImputedRPS, with RESCO2 as our dependent variable.

Table 12: Hausman Test for TRANCO2 Model

χ2 df p-value

387.66 7 ¡ 0.01

For RESCO2 model, we reject the hypothesis and subsequently use fixed effect estimation

as opposed to random effects. The regressors in our test are VMT , HDD, CDD, Pop,

GDP.per.cap, and ImputedRPS, with TRANCO2 as our dependent variable.
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Table 13: Hausman Test for COMMCO2 Model

χ2 df p-value

303.86 7 ¡ 0.01

For COMMCO2 model, we reject the hypothesis and subsequently use fixed effect

estimation as opposed to random effects. The regressors in our test are VMT , HDD,

CDD, Pop, GDP.per.cap, and ImputedRPS, with TRANCO2 as our dependent variable.

Table 14: Hausman Test for INDCO2 Model

χ2 df p-value

1248 7 ¡ 0.01

For INDCO2 model, we reject the hypothesis and subsequently use fixed effect estimation

as opposed to random effects. The regressors in our test are VMT , HDD, CDD, Pop,

GDP.per.cap, and ImputedRPS, with INDCO2 as our dependent variable.

Table 15: Studentized Breusch-Pagan Test for TotalCO2 Model

BP df p-value

394.63 7 ¡ 0.01

The null hypothesis for the Breusch-Pagan test is that there is no heteroskedasticity.

Meanwhile, the alternative hypothesis is that there is heteroskedasticity. We reject the null

hypothesis, and therefore conclude we have heteroskedasticity. The regressors in our test

are VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with TotalCO2 as our

dependent variable.
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Table 16: Studentized Breusch-Pagan Test for RESCO2 Model

BP df p-value

442.99 7 ¡ 0.01

For the RESCO2 model, we reject the hypothesis and subsequently conclude the presence of

heteroskedasticity in our model. The regressors in our test are VMT , HDD, CDD, Pop,

GDP.per.cap, and ImputedRPS, with RESCO2 as our dependent variable.

Table 17: Studentized Breusch-Pagan Test for COMMCO2 Model

BP df p-value

527.53 7 ¡ 0.01

For the COMMCO2 model, we reject the hypothesis and subsequently conclude the

presence of heteroskedasticity in our model. The regressors in our test are VMT , HDD,

CDD, Pop, GDP.per.cap, and ImputedRPS, with COMMCO2 as our dependent variable.

Table 18: Studentized Breusch-Pagan Test for TRANCO2 Model

BP df p-value

522.96 7 ¡ 0.01

For the TRANCO2 model, we reject the hypothesis and subsequently conclude the presence

of heteroskedasticity in our model. The regressors in our test are VMT , HDD, CDD,

Pop, GDP.per.cap, and ImputedRPS, with TRANCO2 as our dependent variable.

For the INDCO2 model, we reject the hypothesis and subsequently conclude the presence

of heteroskedasticity in our model. The regressors in our test are VMT , HDD, CDD,

Pop, GDP.per.cap, and ImputedRPS, with INDCO2 as our dependent variable.
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Table 19: Studentized Breusch-Pagan Test for INDCO2 Model

BP df p-value

447 7 ¡ 0.01

Table 20: Breusch-Godfrey Test for TotalCO2 Model

LM test df p-value

1176 1 ¡ 0.01

The null hypothesis of the Breusch-Godfrey test is that there is no autocorrelation.

Meanwhile, the alternative hypothesis is there is autocorrelation. We reject the null

hypothesis therefore indicating we have autocorrelation. The regressors in our test are

VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with TotalCO2 as our

dependent variable.

Table 21: Breusch-Godfrey Test for RESCO2 Model

LM test df p-value

1125 1 ¡ 0.01

The null hypothesis of the Breusch-Godfrey test is that there is no autocorrelation.

Meanwhile, the alternative hypothesis is there is autocorrelation. We reject the null

hypothesis therefore indicating we have autocorrelation. The regressors in our test are

VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with RESCO2 as our

dependent variable.

Table 22: Breusch-Godfrey Test for TRANCO2 Model

LM test df p-value

1133.3 1 ¡ 0.01
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The null hypothesis of the Breusch-Godfrey test is that there is no autocorrelation.

Meanwhile, the alternative hypothesis is there is autocorrelation. We reject the null

hypothesis therefore indicating we have autocorrelation. The regressors in our test are

VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with TRANCO2 as our

dependent variable.

Table 23: Breusch-Godfrey Test for COMMCO2 Model

LM test df p-value

1154.6 1 ¡ 0.01

The null hypothesis of the Breusch-Godfrey test is that there is no autocorrelation.

Meanwhile, the alternative hypothesis is there is autocorrelation. We reject the null

hypothesis therefore indicating we have autocorrelation. The regressors in our test are

VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with COMMCO2 as our

dependent variable.

Table 24: Breusch-Godfrey Test for INDCO2 Model

LM test df p-value

1214.7 1 ¡ 0.01

The null hypothesis of the Breusch-Godfrey test is that there is no autocorrelation.

Meanwhile, the alternative hypothesis is there is autocorrelation. We reject the null

hypothesis therefore indicating we have autocorrelation. The regressors in our test are

VMT , HDD, CDD, Pop, GDP.per.cap, and ImputedRPS, with INDCO2 as our

dependent variable.
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