An Exploration of Information Loss in Transformer Embedding Spaces for

Enhancing Predictive Al in Genomics

Plan B Paper by

Daniel Hintz

Advised by
Tim Robinson, Shaun Wulff, Alexandre Skiba, and Nicholas Chia

In Partial Fulfillment Of The Requirements
For

A Masters In Statistics

Department of Mathematics & Statistics
University of Wyoming
Laramie, WY USA

(©May, 2024
All rights reserved

Abstract

In this paper, we examine the quality of information preserved in the Genomic Neural Network Em-
bedding algorithm, Genome-scale language model (GenSLM). The research question is: to what degree can
information be retrieved from GenSLM embeddings via intrinsic and extrinsic evaluation? The answer to
this question can provide a benchmark of how easily information can be extracted from GenSLM embed-
dings. Intrinsic and extrinsic assessments are used in this analysis of whole sequence and sub-sequence
Covid DNA. For extrinsic evaluation, supervised learning for classification was performed as a proxy for the
quality of information retrieved. For intrinsic evaluation, unsupervised learning tasks, such as redundancy,
separability, and the relative preservation of the embedding space were performed to assess the quality of the
data reduction. Results offer evidence that GenSLM achieves massive dimension reduction and successfully
encodes genetic information into an embedding that allows for easy data retrieval. GenSLM also requires

fewer resources, technology, or time compared to methods such as One-Hot encoding.

Contents

1 Introduction

1.1 Organization 0 e e e e e
Background

2.1 Embeddings and Embedding Algorithms L o oL
2.2 Natural Language 0 e e e e e
2.3 Sequence Representations e
2.4 SARS-COV-2 . . e
2.5 GenSLM o

Data and Processing

3.1 Data Description o L e

3.2 Data Cleaning & Pre-Processing e

3.3 Exploratory Data Analysis. e

3.4 Generating Embeddings e
Methodology

4.1 Imtrinsic Evaluation L oL

4.1.1 Redundancy e e

4.1.1.1 Singular Value Decomposition (SVD)

4.1.2 Preservation of Semantic Distance oL

4.1.2.1 Continuous Kullback-Leibler Divergence

4.1.2.2 Discrete Kullback-Leibler Divergence

4.1.2.3 Distance Matrices L L e

4.1.3 Separability

4.1.3.1 Linear Discriminant Analysis

4.1.3.2 Principal Component Analysis

4.1.3.3 T-Distributed Stochastic Neighbor Embedding

4.2 Extrinsic Evaluation

4.2.1 Variant Classification

4.2.2 Protein Classification e

10
11
12

13
13
14
14
18

4.2.3 Classification and Regression Trees

5 Results
5.1 Intrinsic Evaluation

5.1.1 Redundancy

5.1.1.1 Singular Value Decomposition,
5.1.2 Relative Preservation of Information
5.1.2.1 Distance Matrices L
5.1.2.2 Kullback-Leibler Divergence

5.1.3 Separability

5.1.3.1 Linear Discriminant Analysis L.
5.1.3.2 Principal Component Analysis
5.1.3.3 t-Distributed Stochastic Neighbor Embedding

5.2 Extrinsic evaluation

5.2.1 Variant Classification e

5.2.2 Protein Classification e

6 Conclusion

7 References

8 Appendices

8.1 Figures e
8.2 Code . . . o o e
8.2.1 Pre-Processing L e

8.2.2 Embedding

9 Glossary

28
29
29
29
29
29
30
33
33
35
37
39
39
42

45

46

50
50
59
59
61

64

Introduction

1 Introduction

Neural network embeddings are widely used in machine learning for dimension reduction (Tuchi et al.,
2021). Although the characteristics of neural network embedding algorithms have been extensively explored
in natural language processing, application to genomic data is less studied (Tuchi et al., 2021). Natural
language inherently possesses structured and semantically meaningful elements like nouns and adjectives,
which aid in interpretation, as well as evaluating the quality of embeddings representation. In contrast,
DNA structures are less well-understood, which might explain why advancements in embedding algorithms
initially flourished in natural language processing before adaption to genomics.

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic code that provides the instructions
for building and maintaining life. The structure of DNA can be thought of as rungs on a ladder, which are
known as base pairs, involving the pairing of four nucleotides - Adenine, Thymine, Cytosine, and Guanine.
These nucleotides are commonly referenced as A, T, C and G, respectively, where A bind with T, and G
bind with C. A popular representation of the DNA ladder is given in Figure 1. Genomic sequencing is a
process used to decipher the genetic material found in an organism, which consist of of reading the base
letters that comprise the genome. Different life forms are characterized not only by different orderings of
the four aforementioned nucleotides, but each lifeform sequence is of different lengths. For example, the
SARS-CoV2 virus, which is the source pathogen' for the Covid pandemic, is approximately 30,0000 base
pairs (bp) in length, whereas the human genome is approximately 3 billion base pairs. Genomes considered
in their entirety are referred to as whole genomes, where a whole genome is made up of the coding and
non-coding region. The coding region specifically encodes proteins that are essential for all the functions
necessary for life. Figure 2 depicts the whole SARS-CoV2 genome marking structural and nonstructural
proteins within the coding region along with the first 43 nucleotides for the nspl protein. Figure 3 depicts
how mRNA, which is a translation of DNA where T — U, is translated to amino acids. In this process,
mRNA, which is synthesized from DNA by replacing thymine (T) with uracil (U), serves as the template for
protein synthesis. Amino acids?, which are assembled in a specific sequence dictated by the mRNA, are the

fundamental building blocks of proteins.

1Now the the most studied DNA sequence in the world.
2Its important to note that many embedding algorithms embed amino acids instead of mRNA or DNA.

Introduction

Figure 1: Base Pairs - Adapted from (National Human Genome Research Institute, 2024)

Nonstructural proteins (nsp) Structural and accessory proteins

4 N

9

A) 5' ORFla s 323 E M6 27p ga 0 N WD
; ORF1b

i Ribosome frameshifting site

nsp !
ppla[if2] 3 [4]s[e[7]s[o[10[11]

'nsp .
pplab[1[2] 3 T4[5]s[7[8]e[10] 12 [13[14[15] 6]

B)

nspl

|

ATTAAAGGTT TATACCTTCC CAGGTAACAA ...

Figure 2: 2A. Whole Sars-CoV2 Genome with each Coding Region; 2B. Non-Structural Protein 1 (nspl),
and First 43 Nucleotides adapted from (Kandwal and Fayne, 2023, p. 99)

Introduction

Amino Acids

Codon 1 -| Alanine

i

FPOCOOOCCNOPEREOORCOO

Codon 2 -| Threonine

Codon 3 -| Lisine

Codon 4 -|Leucine

Codon 5 -|Arginine

Codon 6 - | Stop

mRNA

Figure 3: Sourced from (ScienceDirect, 2004)

The leap from embedding algorithms for natural language to embedding algorithms tailored to genomic
data was first used with amino acids by Riis and Krogh (1996). Modern neural network embedding algo-
rithms include DNABert, GENSLM, and HyenaDNA (Zhou et al., 2023; Zvyagin et al., 2023; Nguyen et al.,
2024). Despite the use of these modern embedding algorithms, there has been little investigation into the
redundancy, recoverability, and level of granularity associated with these algorithms that can be explained
by the embedding space (Gharavi et al., 2021).

The effectiveness of any machine learning application® relies on the data representation, the objective
function, and the optimization procedure (Liu and Sun, 2023). As noted by Tuchi et al. (2021), the structure
of how the data is represented is crucial as it impacts the performance of both Natural Language Processing
(NLP) and deep learning applications (Iuchi et al., 2021, p. 3199). Therefore, it is vital for researchers work-
ing with genomic embeddings to understand the potential for information retention based on the embedding
algorithms chosen for specific applications. This understanding is particularly crucial given the ongoing
demand for dimension reduction to ease computational burdens in areas of transformer development®.

This project explores the quality of embeddings through both intrinsic and extrinsic evaluations. Intrin-
sic evaluation focuses on the direct study of information preservation, whereas extrinsic evaluation assesses
the quality of an embedding algorithm based on its performance in downstream tasks, such as regression
and classification, across varying levels of task complexity.

Genomic sequences continuously change through mutations, and much of genomic research focuses on

studying these variations Corso et al. (2021). To quantify the distance between two sequences, biologists

3a Neural network is an example of a machine learning application
4such as transformer attention mechanisms. Where for example, GenSLM tokenizes sequences by codons, leading to a
10,000 x 10,000 attention block for Covid (30kb) and a 1B x 1B block for human DNA.

Introduction

use precise statistical models that calculate what is known as the edit distance (e.g., how different is the
sequence, s1 = “AGTA" from the sequence, s2 = “AAGT"). The edit distance represents the smallest number
of weighted insertions, deletions, or substitutions needed to convert one sequence, sl, into another, s2. There
are a variety of edit distance metrics, such as the Hamming, Levenstein, and cosine distance.

It should be noted that edit distances are computationally expensive due to quadratic complexity and
are difficult to parallelize. This makes using genomic sequences in their nucleotide (or amino acid) encodings
a significant bottleneck in large-scale analyses Corso et al. (2021). Instead of comparing whole genome
sequences, it would be more convenient to compare dimensionally reduced sequences, provided that the
dimension maintains a large proportion of the information contained in the whole genome sequence. In
response to this problem, embedding algorithms have exploded onto the scene for reducing the algorithmic
complexity of working with whole genome sequences. By using embedding algorithms, the computation
burden shifts to a preprocessing task and relieves computational complexity and redundancy of downstream
tasks that can allow for more efficient pipelines.

The goal of this study is to provide a performance evaluation of the GenSLM embedding algorithm using
extrinsic and intrinsic evaluation techniques. The extrinsic evaluation focuses on downstream tasks, while
the intrinsic evaluation focuses on understanding the quality of information produced by the embedding
algorithm. The extrinsic evaluation assesses downstream tasks from a range of difficulties. The extrinsic
evaluation techniques are somewhat more straightforward than those techniques used in intrinsic evaluation.
Applying intrinsic evaluation techniques to genetic DNA data poses more challenges compared to the original
use in natural language processing (Lavrac et al., 2021; Liu and Sun, 2023; Tuchi et al., 2021). For context,
the definition of intrinsic evaluation in the NLP literature is the “assessment of whether the similarities of
the input entities (training examples) described in the original representation space are preserved in terms
of the similarities of the transformed representations” (Lavra¢ et al., 2021, p. 11). Translating this to
a genomics context, the distances between two sequences that are submitted to an embedding algorithm
should have relativity the same distance in their embedded matrix representation. For supervised learning
in the intrinsic case, classification is performed with labels protein and variant using a weak learner, such as
classification and regression trees (CART) . For unsupervised learning in the intrinsic case, separability is
assessed with Linear Discriminate Analysis (LDA), Principal Component Analysis (PCA), and t-Distributed
Stochastic Neighbor Embedding (t-SNE) as well as Redundancy being assessed with PCA and Singular Value
Decomposition (SVD). Notably, this paper marks the first extrinsic evaluation of GenSLM and possibly the

first intrinsic evaluation of an embedding algorithm for genomic sequences.

1.1 Organization Background

1.1 Organization

This study will first expand upon the background of embedding algorithms for genomic sequences and
their origins in the NLP domain. A brief background of SARS-COV-2 and GenSLM is provided to better
understand the nature of tasks performed later in the study. This is followed by a summary of the data
processing and exploration as a precursor to running the embedding algorithms and methods for intrinsic
and extrinsic evaluation. The resulting findings from the intrinsic and extrinsic evaluation and related

interpretations are then presented and followed by a discussion and conclusions.

2 Background

2.1 Embeddings and Embedding Algorithms

In natural language processing, words in the natural language are commonly represented by numeric
vectors. For example, suppose qugen = (0.3,0.9), ki_;lg = (0.5,0.7), woman — (0.3,0.4) and man = (0.5,0.2).
Note that ki_r>1g — man + woman = queen, the result is (0.5,0.7) — (0.5,0.2) + (0.3,0.4) = (0.3,0.9). Similarly,
in genomics, specific nucleotides of DNA - ‘A’ ‘G’, ‘T’ ‘C’ - can be represented by numeric vectors. These
vectors are often referred to as ‘embeddings,” which is a term originally used in mathematics to describe the
process of mapping from one space to another. However, in both computational biology and language pro-
cessing, the term ‘embeddings’ has now more commonly come to mean the dense vectors produced by specific
algorithms, such as GenSLM, hyenaDNA, or DNABERT2. To improve clarity, it is useful to differentiate
between ‘embedding algorithms’ which refer to the methods generating these vectors, and ‘embeddings’
themselves, which are the resultant dense vectors also known as ‘Distributed Representations’ or ‘Latent

Spaces’ (Liu and Sun, 2023).

2.2 Natural Language

Genomic sequences resemble natural language in that characters are used to define their meaning, and
that meaning depends on their location relative to other sequences (Tuchi et al., 2021). For instance, the
interpretation of the word “bank" as either a financial entity or a landform beside a body of water hinges on
its surrounding context (Liu and Sun, 2023, p. 47). In an analogous manner, the formation and structure
of a segment of RNA is influenced by the sequences adjacent to it (Iuchi et al., 2021). Therefore, given

the parallels between natural language and genomic sequences, utilizing natural language processing (NLP)

5 Although, the term “embeddings" is sometimes more strictly applied only to dense vectors like word2vec, DNABERT2, and
GenSLM, rather than sparse tf-idf or PPMI vectors (Jurafsky and Martin, 2019).

2.3 Sequence Representations Background

techniques can offer insight into the functional and structural information embodied in genomic sequences
(Tuchi et al., 2021). An important characteristic of embeddings in NLP is that vector distance is also a
measure of semantic similarity, as already demonstrated with ki?lg — man + woman = qu_e;en7 see Figure 4.
Vector distance is equally crucial in genomic embedding algorithms and is generally determined using
linear algebra techniques, including the dot product, Euclidean distance, and cosine similarity (Iuchi et al.,
2021). As an illustration, consider a list containing information on organisms as well as food. Then, using
an embedding algorithm, a 2 dimensional (x, y) embedding is obtained, as seen in Figure 5. In this simple
example, it is expected that the vector similarity for Cows would be closer to frogs than Sushi or Pizza, and
similarly, it would be expected that the vector similarity of Sushi would be closer to Pizza than Cows or
Frogs. Likewise, in genomic sequences, the a-amino-3-hydroxy-5-methyl4-isoxazolepropionic acid receptor
and the N-methyl-D-aspartate receptor, which are both ionotropic glutamate receptors, would have a close
vector similarity (Iuchi et al., 2021, p. 3199). Hence, it is hoped that the embeddings and the original
sequences possess similar function and structures so that there should be high vector similarity between

proteins (Tuchi et al., 2021, p. 3199).

king female queen

royal royal

man female woman

Figure 4: Sourced from (Ethayarajh et al., 2018, p. 4)

2.3 Sequence Representations

Liu and Sun (2023)°, provide a framework that underscores the importance of high-quality representa-

tions (embeddings) for perfoming any learning task, see Equation 1.
Knowledge Discovery from Data = Representation” + Objective + Optimization (1)

Equation 1: Adapted from (Liu and Sun, 2023, p. 1)

Equation 1 describes how to learn from data with using learners, in the general sense that one needs

6 A canonical source for Embedding in NLP applications.

10

2.4 SARS-COV-2 Background

Figure 5: Sourced from (Iuchi et al., 2021, p. 3199)

a way of representing data that a computer can handle (a Representation), a means of evaluating learner
performance (an objective function), as well as mechanism to search different learner configurations for
the best performance (optimisation). More importantly, equation 1, shows that an effective representation,
or embedding, of a genomic sequence is crucial for clustering, classification, regression, protein function
identification, structural analysis, and predicting genetic disorders (Angermueller et al., 2016). For example
in a separate study by Jing et al. (2019), they found differences of up to 27.51% in the classification rate of
Protein Secondary Structure between different embedding algorithms with a Random Forest learner (Jing
et al., 2019, p. 1927). Clearly, the representation method, or embedding algorithm, is critical for successful
and accurate protein classification. For context, the margin between 1st and 20th place in Kaggles Stanford
Ribonanza RNA Folding Competition with $100,000 in prize money is a difference in mean absolute error

(MAE) of only 0.00598 (Kaggle, 2023).

2.4 SARS-COV-2

As already discussed, Coronaviruses are enveloped RNA viruses that possess a positive-sense single-
stranded genome and are part of the Coronaviridae family. They are divided into four main subgroups:
Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus, with SARS-CoV-2 falling
under the Betacoronavirus genus. The single-stranded RNA genome of coronaviruses contains 29,891 nu-

cleotides which translates into 9890 amino acids. The genome of SARS-CoV-2 includes several open reading

11

2.5 GenSLM Background

frames (ORFs) that code for both structural (SP) and non-structural proteins (NSP) which play crucial roles
in the virus life cycle and its pathogenic mechanisms, see Figure 2. Coronaviruses have structural proteins,
such as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins that construct the virus’s
physical structure, and sixteen non-structural proteins (nspl-16) that are involved in the virus metabolism
and interactions with the immune system of the host. Like many viruses, coronaviruses can mutate during
replication. These mutations may lead to new pathogenic variants that could alter the virus’s transmission,
impact the severity of the disease, and influence the effectiveness of vaccines (Farhud and Mojahed, 2022).
By nature, DNA contains highly redundant information. The sequence similarity across SARS-CoV-2
genomes is generally high, typically greater than 99%, with only a small number of changes that yield distinct
phenotypes (Zvyagin et al.; 2023). For example, as few as 22 mutations can identify a variant as unique
from the progenitor of SARS-COV-2, as in the case of Gamma Variant (Farhud and Mojahed, 2022). This is
contextually crucial information as redundancy is a centerpiece for evaluating the quality of the embedding

algorithm and it’s associated output, see Section 4.

2.5 GenSLM

GenSLM is a hierarchical transformer-based model that leverages both Generative Pre-trained Trans-
formers (GPT) for individual gene sequences and stable diffusion techniques. An important concept of
GenSLM, and all embedding algorithms, is the idea of a “tokenizer". In the popular NLP algorithm BERT,
words are treated as ‘tokens’ rather than whole units, and the tokenizer is simply the name for the function
that breaks up words into sub-units. In GenSLM, the input sequence is tokenized into codons, which are
chunks of 3 nucleotides at a time: “AAG", “TAG", etc. The output dimension of the embedding is nx512,
where n represents the number of input sequences. Each element of the 512 elements should roughly corre-
spond to an open reading frame (ORF) where Covid has 20 ORF; see the 20 ORFs for image A) depicting
coding region in Figure 2. Hence, for a Covid sequence with a length of 30,720 base pairs (bp), there are
30,720/3 = 10,240 codons (“tokens") from 20 open reading frames, which provides us with 512 elements
(Eq. 2). However, GenSLM elements are not meaningfully interpretable, and the dimensions of GenSLM
vectors are simply the product of the scaling to be specific to the Covid sequences, as shown in Equation 2
below:

Number of Codons for a 30720 bp Covid sequence

Number of GenSLM Elements = Number of Covid ORF's @)

10240 — 512
20

12

Data and Processing

The core engine of GenSLM includes transformers and diffusion models. These two types of models are
used in tandem to create an understanding of the local (codon level) and global (sequence level) context
needed for genetic analyses. The first step in the GenSLM algorithm is to pass the input sequence to its
transformer encoder that converts the bp character representation into numeric vectors before recursively
running the transformer encoder through a diffusion model to learn a condensed distribution of the whole
sequence. The transformers in GenSLM are used to capture local interactions within a genomic sequence,
whereas the diffusion model integrates information across much larger segments of the genome that can
essentially capture information that could be missed at the transformer level. The integration of transformer
models and diffusion models is hierarchical by using the transformer for finer details and the diffusion model
for broader context. This hierarchical integration allows GenSLM to analyze and predict potential variants
in the genome.

The foundation model for GenSLM used in this paper is the 25 million parameter model from Globus
as specified from the GenSLM Github landing page ramanathanlab/genslm. An important caveat of the
GenSLM-25M model is that it was specifically trained only on the first year of the SARS-CoV-2 data
consisting of ~ 85,000 SARS-CoV-2 genome sequences, as well as using sequences aligned to the now outdated
reference NC _045512.1 (Zvyagin et al., 2023). Thus, the model did not have the opportunity to see any of

strains beyond March 2021 (Zvyagin et al., 2023).

3 Data and Processing

This section is organized as follows: in Section 3.1 the source for the 581 sequences upon which this report
is based is described. Section 3.2 explains the data cleaning (exclusion criteria) and pre-procesing (multiple
sequence alignment). In Section 3.3 data structure is explored within the realm of whole genome sequences
across multiple SARS-CoV2 variants for the purpose of comparison with their embedding equivalents, as
described in Section 5. In Section 3.4, the workflow of downloading the data, to generating the embeddings

is presented.

3.1 Data Description

All of the Covid sequences used in this paper were taken with permission from the Global Initiative
on Sharing All Influenza Data (GISAID) via the API GISAIDR (Wirth and GISAIDR, 2022). No geo-
graphical or temporal restrictions were placed on the sequences extracted and instead were only filtered
for sequence quality. However, extensive post-processing was performed above and beyond the GISAID’s

exclusion criterion for Covid sequences.

13

https://app.globus.org/file-manager?origin_id=25918ad0-2a4e-4f37-bcfc-8183b19c3150&origin_path=%2F
https://github.com/ramanathanlab/genslm

3.2 Data Cleaning & Pre-Processing Data and Processing

3.2 Data Cleaning & Pre-Processing

In this study, the process of preparing genomic data involved several meticulous steps to ensure the
accuracy and utility of the data for embedding and analysis. To achieve this, automated quality filters
available through the GISAID API were employed. Only sequences marked as “Complete" and having
“High coverage" were included in the dataset. GISAID classifies genomes longer than 29,000 nucleotides
as complete, aligning well with the reference genome for SARS-CoV-2, which is 29,674 base pairs long.
The “High coverage" filter restricts sequences to those with less than 1% undefined bases (denoted as ‘N’),
which indicates a high repetition in the reading of each nucleotide and thereby enhances the accuracy of
the genomic sequence. Conversely, sequences with more than 5% undefined bases are considered to have
low coverage, indicating poorer quality due to insufficient sequencing depth, which could lead to significant
uncertainties in the genomic data. This exclusion criterion was supplemented with additional post-processing
to exclude sequences with ‘N’ ambiguous nucleotides and gap length. The exclusion criteria for Gap length
was executed by removing sequences with gap lengths in proteins twice as large as a mode gap length.
Together, the GISAID’s exclusion criterion and additional post-processing ensured that only high-quality,
reliable DNA sequences were used for subsequent analysis.

Protein level analysis focused on accurately segmenting the SARS-CoV-2 proteins before passing protein
sequences to GenSLM to be embedded. This required a Multiple Sequence Alignment (MSA), for which the
Clustal Omega algorithm was used from the msa package in R (Sievers et al., 2011; Bodenhofer et al., 2015).
To obtain the locations of proteins in terms of base pairs, the Wuhan reference sequence (NC _045512.2),
was included in the alignment for which protein locations are documented (NCBI Reference Sequence, 2023;
Bai et al., 2022, p. 283). By exploiting the known locations of the reference sequences, as well as string
matching unaligned reference sequences to the aligned reference sequence, the updated protein locations
were obtained for later slicing of whole sequence genomes into the respective proteins. Through these careful
preparatory steps involving the GISAID API for data extraction, quality control, and multiple sequence

alignment, precise and meaningful data for subsequent analysis could be obtained.

3.3 Exploratory Data Analysis

The sequences used in all the subsequent analyses had a sequence length around what would be expected
for high coverage Covid sequences (~ 29000 bp). Moreover, after performing the multiple sequence alignment,
a Radial Dendrogram was constructed by first calculating the identity pairwise distances (IPD). This distance
is a square root dissimilarity measure of the proportion of bases matching between two sequences (Charif and

Lobry, 2024). For example, consider two DNA sequences, Sequence 1: “ATCG", and Sequence 2: “ATCA".

14

3.3 Exploratory Data Analysis Data and Processing

To calculate the identity pairwise distance between these sequences, you first determine how many positions
are identical. Here, the first three nucleotides (ATC) are identical, and the fourth nucleotide differs. So,
three out of four nucleotides are identical, making the proportion of bases matched 0.75. The dissimilarity is
then 1.0 — 0.75 = 0.25. The identity pairwise distance between sequences 1 and 2 is obtained as the square
root of the dissimilarity: 1/0.25 = 0.5. This value quantifies the difference based on mismatched nucleotides,
considering gaps if specified. There are no gaps in this simple example. After obtaining the identity pairwise
distances, an agglomerative clustering with complete linkage is performed based on the pairwise distances.
Finally, the Radial Dendrogram in Figure 7 was generated with the R function ape: :plot.phylo (Paradis
et al., 2024). This dendrogram, which accounted for gaps, illustrates moderately good clustering of Covid
variants, albeit with the somewhat strange placement of the Wuhan reference genome relative to the scientific
census for very large samples of the Covid sequence (Nextstrain, 2022). This feature is likely not a failure

on the part of agglomerate clustering algorithm but the sample of sequences used.

250
|

Frequency

50
1

| E—]

o -

[T T T T 1
29000 29200 29400 29600 29800 30000

Sequence Length

Figure 6: Sequence length across 581 subjects (Line Marks Sequence Length Post-Alignment)

15

3.3 Exploratory Data Analysis Data and Processing

% e, = Variants
e e alpha
beta
delta

epsilon
gamma

mu

omicron
Wuhan-Hu-1

Figure 7: Radial Dendrogram for 581 Aligned Whole Genome Covid Sequences with Wuhan-Hu-1 Reference
- See Figure 12 for Comparison -

16

3.3 Exploratory Data Analysis Data and Processing

The placement of the Wuhan sequence for the dendrogram in Figure 7 is merely a product of the
structure of the data, as shown in Table 1 and Figure 8. This suggests the sample of 581 Covid sequences

used may not be reflective of the Covid variants overall.

Table 1: Mean Gap Sizes, Mutations, and Total Changes for COVID-19 Variants Aligned to Reference.

Variant Mean Gap Size Mean Mutation Count Total Changes

Alpha 324 294.66 618.66
Beta 170 146.35 316.35
Delta 203 167.31 370.31
Epsilon 191 166.35 357.35
Gamma 178 136.69 314.69
Mu 219 163.12 382.12
Omicron 185 62.26 247.26

Note: Mutation counts are based on Hamming’s Distance calculations.

o
S
S

Hamming Distance

EN
o
S
.

300 - i i
. alpha

=
[] =
. epsilon
] BS ganma
B3 mu
ES omicron

200

100

N

Variant

Figure 8: Whole Genome Mutation Count (Hamming Distances) from Wuhan Reference

17

3.4 Generating Embeddings Data and Processing

In addition, the Hamming distance was calculated per protein sequence from the aligned Wuhan reference
sequence, which indicates the number of mutations from the progenitor virus, as seen in Figure 9. It can
also be noted from Figure 9, that the Spike protein (S) and M have the most mutations, colored in red to

purple, while most other proteins, colored in mostly yellow, have very few mutations.

1
’f__%%k = I — pr—— = e — &

Orf7a
nsp2
nsp1
Orf10
nsp16
nsp10
Orf9c
nsp?
nsp11
Orf3b

Orf7b
nsp8
nsp89
nsp13
nspid
nsp15
| orf6
nsp5

| nspd
Orf3a
nsp8
nsp3
Orf8b
nsp12
Orfab

{F T T . i I-:'

Sequences

Figure 9: Hamming Distance of Aligned Proteins to Wuhan Reference Sequence

3.4 Generating Embeddings

For embedding the Covid DNA sequences variant by variant as well as protein by protein, a combination
of bash pipelines were created and executed with SLURM Jobs Arrays on a high-performance computing
(HPC) Linux environment, see Figure 25 in the appendix. For the interested reader, one can inspect the
code used for executing the embedding in Scripts 1, and 2 for pre-processing, and Scripts 3, 4 and 5 in
the appendix. These pipelines required computing resources greater than what is typically available for
a standard-issue laptop. Initially, even in an HPC environment, computing jobs could take over twelve
hours to complete and occasionally exceed 20 GB in memory utilization. By editing scrips to run as job
arrays, computational times were expedited and often completed within six hours of execution. Note that

the environment file for recreating the conda environment used for embedding can be found in the following

18

Proteins

100

80

60

40

20

3.4 Generating Embeddings Data and Processing

file environment.yml.

Passing sequences through the embedding pipeline, specifically at step 3, is part of a broader workflow
depicted in Figure 10, which typically spans a week to complete. The workflow begins with downloading
sequences using the GISAID API®, spanning a half-day process for Step 1. Step 2 involves multiple sequence
alignment, which could take up to a week, followed by step 3, which would take about six hours for embedding.
The final step before evaluation, Step 4, aggregates the results in less than an hour. This extensive process
generates numerous files: the original GISAID data in a .feather” file, a .rds file from the alignment,
another .feather file after post-processing alignments, several .h5'0 sequence and embedding files, and a
.feather file for the aggregated embeddings across all variants and proteins. Note that all of the code for

producing the results in this paper can be found at the Github repository DHintz137/GenSLM_Embedding.

1) GISAID API

(download sequences)

2) Pre-Process Sequences

(remove sequences of poor quality)

3) Embedding Pipelines

(embed sequences)

4) Aggregate Embedding h5 files

(arrive at a single dataframe)

5) Perform Downstream Task

(evaluate information retrieval)

Figure 10: General Workflow

8 Most of this time was due to the sleep times introduced to account for API rate limiting so as to avoid temporally losing
access to the APL.

9 A .feather file is a binary columnar data storage format designed to efficiently store and access data frames.

10 n5 files are a highly efficient hierarchical data format associated with HDF5 (Hierarchical Data Format version 5) and are
commonly used in bioinformatics.

19

https://github.com/DHintz137/GenSLM_Embedding/blob/main/environment.yml
environment.yml
https://github.com/DHintz137/GenSLM_Embedding
DHintz137/GenSLM_Embedding

Methodology

4 Methodology

This study aimed to assess the quality of the GenSLM embedding algorithms when applied to genomic
analyses. The quality of an embedding is assessed based upon its information richness and the degree of
non-redundancy. Information richness is greater when there is higher learner performance for downstream
tasks. Non-redundancy is gauged by how much the information can still be compressed without being
dimensionally redundant (Jing et al., 2019). When downstream learning tasks are evaluated, it’s often
referred to as extrinsic evaluation. While when the qualities of the embedding matrix itself are assessed it is
often referred to as intrinsic evaluation (Lavrac et al., 2021).

There are various methods for conducting intrinsic and extrinsic evaluations of embeddings. The sub-
sections below detail these methods. The intrinsic evaluation (Section 4.1) focuses on three attributes:
redundancy, separability, and the preservation of semantic distance. Section 4.1.1 examines redundancy
using Singular Value Decomposition (SVD), and also explores redundancy through a classification task on
dimensionally reduced data (Section 5.2.2). The preservation of semantic distance is assessed in Section
4.1.2 using Kullback—Leibler Divergence. Separability is investigated in Section 4.1.3 through LDA, PCA,
and t-SNE techniques. For extrinsic evaluation (Section 4.2), CART is employed to classify variants and

proteins.

4.1 Intrinsic Evaluation

For intrinsic evaluation, three methods were used, each providing unique insight. Studying an embed-
ding’s redundancy reveals the efficiency of its encoding; more efficient encodings tend to perform better and
use fewer computational resources. Separability gives practical insight into whether or not the embedding
output can be separated into meaningful genomic groups (i.e., variants). Meanwhile, exploring the preserva-
tion of semantic distance is important for determining if the structural representation of information remains
valid for subsequent tasks.

Intrinsic analysis of embeddings presents several challenges primarily related to measuring semantic
distance and validating the interpretations drawn from these measurements. For instance, distances in latent
spaces, which are the vector spaces formed by dimension-reducing embedding algorithms, lack physical units,
leading to complicated interpretation. Additionally, latent spaces are influenced by the architectural details
of the specific neural networks (i.e., GenSLM) used to produce them (Arvanitidis et al., 2017). Moreover,
the distance calculations used to determine differences between latent spaces are more complex in neural

networks because the latent space is non-linear (Arvanitidis et al., 2017). This fact brings difficulties in

20

4.1 Intrinsic Evaluation — 4.1.1 Redundancy Methodology

selecting a distance metric that maps between both a linear and non-linear space. The investigation of the
semantic distance from the original representation to the embedding space may fail as a result of the metric
and not the embedding algorithm chosen''. The following sections will provide a detailed methodology for

each of these intrinsic evaluation methods.

4.1.1 Redundancy

In this paper, redundancy will be explored through two methodologies: Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA). Detailed descriptions and results of SVD are presented
in Sections 4.1.1.1 and 5.1.1.1, respectively. Similarly, PCA is discussed in Sections 4.1.3.2 and illustrated

in Figure 23.

4.1.1.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a technique used to analyze redundancy by measuring the
cumulative proportion explained (CPE), where CPE is a measure of how much variance in the original data
captured by the singular values, 3, Moreover, SVD decomposes any complex-valued matrix X of dimensions

n X m into a product of three matrices, as shown below (Peters, 2019):

X = USV* (3)

Here, U and V are unitary matrices from the sets C**™ and C™*"™ respectively, each having orthonormal
columns. The matrix 3, which lies in R”*"™ contains real, non-negative diagonal entries and zeros elsewhere.
In this context, the asterisk notation (*) represents the Complex Conjugate Transpose, otherwise known as
the Hermitian Transpose'?.

For cases where n > m, the diagonal of 3 holds at most m non-zero elements, and can be expressed as:

> = (4)

Consequently, X can be precisely reconstructed using the economy SVD'?

HThese challenges can often easily be overcome in NLP as the embedding map to a vector for each word or sub-word unit.

12" The Hermitian Transpose can be computed in R using t(Conj(X)).

13Note: U< is the orthogonal complement of the subspace spanned by I:J, i.e., it is the set of all vectors in the encompassing
space (that includes U and more) that are orthogonal to every vector in U.

21

4.1 Intrinsic Evaluation — 4.1.2 Preservation of Semantic Distance Methodology

X =USV* = [U Ut } V* =UBV* (5)
0

This reduced form still completely captures the matrix X while utilizing a simplified structure (Pe-
ters, 2019). This simplified structure is used in calculating the cumulative proportion explained, which is

calculated by the cumulative sum of the singular values squared, cumsum (diag(32)).

4.1.2 Preservation of Semantic Distance

Embedding algorithms, as data transformation tools, modify the coordinate system of the output space.
Although neural network embedding algorithms do not constitute invariant transformations, they are ex-
pected to preserve the semantic distances inherent in the data (Lavrac¢ et al., 2021). For instance, it is
anticipated that the cosine distance between sequences from the same variant would be smaller compared to
distances between different variants. This expectation mirrors the Word Analogy task in natural language
processing, as discussed by (Lavrac et al., 2021). For measuring sequence similarity in their DNA charac-
ter encodings, the Discrete Kullback—Leibler (DKL) divergence is appropriate, considering that counts of
nucleotide bases (“A", “G", “T" and “C") are discrete. Conversely, for embeddings, the Continuous Kull-
back—Leibler (CKL) divergence can be employed since embeddings exist within a continuous vector space.
This paper employs both Discrete Kullback-Leibler (DKL) and Continuous Kullback-Leibler (CKL) diver-
gence to determine if the distortions from the GenSLM transformation are minimal enough to deem the

embeddings reliable for bioinformatics pipelines

4.1.2.1 Continuous Kullback—Leibler Divergence

The Continuous Kullback—Leibler divergence (CKL), also known as Continuous Relative Entropy or
I-divergence, is a non-symmetric measure'* of divergence between two probability distribution functions
(PDF). Where statistical divergence is defined as the “degree of separation of two points f and g, but it or
its square root is not a distance" (Amari, 2016, p. 10). This is because it does not necessarily satisfy the

symmetry condition, so that in general:

Dxr(fllg) # Dxr(gllf)- (6)

14 In the sense that it is not technically a distance or metric, as it doesn’t satisfy the triangular inequality.

22

4.1 Intrinsic Evaluation — 4.1.2 Preservation of Semantic Distance Methodology

However, a convenience of CKL is that it acts in accordance with the geometric properties of PDF’s as

the same role as squared Euclidean distance (Csiszar, 1975). Hence, the relative entropy D(f|lg)'° of two
PDFs, f and g, is defined as:
f(z)
Dict(fl9) = [f)ios L T (7
(fllg) g (@)

where S is the support set of f'. It should be noted that the Continuous KL Divergence was approximated
using a normal distribution, based on the mean and standard deviation of the embedding vectors. This
approach facilitated the integration of CKL values, where the assumption of normality is reasonably satisfied,

as illustrated in Figure 24.

4.1.2.2 Discrete Kullback—Leibler Divergence

Meanwhile, the Discrete Kullback—Leibler (DKL) divergence is defined as the following:

P(i)
Qi)

mmﬂ®:ZHM%

where P; represents the frequency of the i*? nucleotide in a specific genome X, and @Q; denotes the average
frequency of this nucleotide determined from all complete genomes (Akhter et al., 2017). In the discrete

case, KL divergence is the statistical divergence between two DNA sequences treated as discrete PDF’s.

4.1.2.3 Distance Matrices

Distance matrices offer another method for evaluating the preservation of semantic distance. However,
before constructing a distance matrix, an appropriate distance metric must be chosen. For DNA sequences,
the identity pairwise distance is suitable due to its simplicity and interpretability. There are also efficient
open-source tools available for this calculation, such as the R function seqinr: :dist.alignment, which was
previously explained in the Section 3.3. For the embeddings, Euclidean distance is selected for its speed
and simplicity despite the potential issue that the latent space may not be Euclidean. This calculation is

performed using the stats::dist function in R.

15 where || denotes f is relative to g.
19 Note that D(f[lg) = 0 if supp(g) & supp(f).

23

4.1 Intrinsic Evaluation — 4.1.3 Separability Methodology

4.1.3 Separability

In the context of bioinformatics, the separability of embedding outputs into meaningful genomic groups,
such as variants, is crucial for effective analysis and interpretation. The ability to distinguish these groups
within the embedding space indicates that the transformation algorithms have maintained critical biological
distinctions. This aspect of data analysis ensures that subsequent analyses, such as clustering or classification,
are grounded in biologically relevant differences rather than artifacts of the data transformation process. In
this section, we explore various statistical and machine learning methods to evaluate the separability of

genomic groups in the embedding space to provide a check for robust downstream analyses.

4.1.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a statistical technique used for classification and discrimination
of observations into predefined groups based on multivariate data. The primary goal of LDA is to find rules
that best separate known groups, which are denoted as G1,G?,...,Gy, and optimally allocate observations
to these groups. This involves two main components: Discriminant Analysis (DA), which develops rules
that effectively distinguish between different groups, and Classification Analysis (CA), which assigns new
observations to one of the predefined groups based on these rules (Everitt and Dunn, 2001a).

The decision to assign an observation y; to a group k is based on either minimizing the distance between
the observation and the group centroid or maximizing the likelihood that the observation belongs to group
k. Assuming that the data for each group follows a multivariate normal distribution, the probability density

function (PDF) for an observation y; belonging to group k is given by:

_r _1 1 _
felyi) = (2m) 7% S| 72 exp _i(yi — 1) (i — k) (9)
If equal covariance matrices are assumed across groups (¥; = --- = ¥, = X), then the equation

simplifies, and ¥y, is replaced with a pooled estimate S = Sp. The probability of group k given observation
yi (posterior probability) is calculated using Bayes’ rule:

51 Ju(yi) P(Gh)

where P(G},) is the prior probability of group k. The observation is then assigned to the group that maximizes

this posterior probability. Under the assumptions of multivariate normality, equal covariance matrices, and
equal priors, the optimal allocation rule becomes Fisher’s Linear Discriminant Function (LDF) (Everitt and

Dunn, 2001a). Fisher’s LDF seeks a linear combination of variables that maximizes the ratio of the between-

24

4.1 Intrinsic Evaluation — 4.1.3 Separability Methodology

group variance to the within-group variance, thereby maximizing the separation between groups. This is

achieved by finding coefficients a;) that satisfy:
-1
E™ Haj) = Ag)ag) (11)

where E is the within-group sum of squares and cross-product matrix, and H is the between-group
equivalent (Everitt and Dunn, 2001a). LDA is being utilized in this paper for its utility in forcing a separation

of groups, as illustrated by Figure 14.

4.1.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a dimension reduction technique used to simplify a dataset
with many variables into fewer principal components that still capture the essential variability in the data
(Everitt and Dunn, 2001b). These components are linear combinations of the original variables formulated to
maximize the captured variance sequentially to ensure that each component is uncorrelated with the others.
Mathematically, this involves solving for components that maximize the variance under orthogonality and
normalization constraints, represented in the eigen value decomposition of the covariance or correlation
matrix: sz)SQ(j) subject to Q’(j)g(j) =1 and g’(j)g(m) = 0, see equation 13 (Everitt and Dunn, 2001Db).
Each principal component score ¢;(;) is then calculated as ¢;(j) = Q;(j) 2;, where z; is the standardized data
vector. This process is sensitive to the scaling of the original data which makes the choice between using the
covariance matrix S (see equation 14) and the correlation matrix R crucial. Applying PCA to a covariance
matrix focuses on maximizing variance among highly correlated variables whereas PCA for a correlation
matrix standardizes the scale of variables to treat them equally. As already indicated, this choice can
have large ramifications for the analysis, especially when original variable scales differ significantly. In the
mathematical formulation, each component maximizes a specific variance function under constraints that

ensure orthogonality and unit scaling.

Linear Combination l(;) = ag;)y = agnyr +agyeyz + - .- + ag)p¥p (12)
alay =1 scaled
a;) maximizes g’(j)SQ(j) subject to S=0) () (13)
a(;ya(my =0 (orthogonal)

25

4.1 Intrinsic Evaluation — 4.1.3 Separability Methodology

M O - 0 Q/(1)
0 X - 0 |]|d
)
§ = AN = a0 o) | : (4
L0 0 N] ag) |

PCA is used to derive scores, or principal components, that can effectively summarize the data. Plot-
ting these components can be used to visually assess if the grouping variable, such as a specific genomic
classification, distinctly separates. This visualization helps determine if the embedding matrix possesses the

quality of separability to indicate how well it maintains meaningful distinctions within the data.

4.1.3.3 T-Distributed Stochastic Neighbor Embedding

The visualization tool, t-Distributed Stochastic Neighbor Embedding (t-SNE) is a statistical method for
visualizing high-dimensional data by reducing its dimensions to facilitate the exploration of data structure
(Van der Maaten and Hinton, 2008). Initially, t-SNE constructs a probability distribution in the high-
dimensional space such that similar data points are assigned higher probabilities while dissimilar points are
assigned lower probabilities. The similarity of data point z; to x; is modeled as a conditional probability p;j;,
which is computed using a Gaussian distribution centered at x; (Van der Maaten and Hinton, 2008). These
probabilities are symmetrized to form a joint probability distribution p;; in the high-dimensional space.

In the low-dimensional space, t-SNE defines a similar probability distribution using a Student t-
distribution, denoted as g;;. The choice of the t-distribution is characterized by heavier tails than a Gaussian
distribution which helps in effectively modeling the joint probabilities of dissimilar data points which allows
them to be positioned further apart on the map.

The main objective of t-SNE is to minimize the Kullback-Leibler divergence between the two probability
distributions p;; and g;; over all pairs of data points (Van der Maaten and Hinton, 2008). This minimization
is typically achieved through gradient descent techniques. The Kullback-Leibler divergence acts as a cost
function that measures the fidelity with which distances in the high-dimensional space are preserved in the
low-dimensional embedding.

The effectiveness of t-SNE lies in its ability to capture the local structure of the data while revealing
clusters and patterns that are difficult to discern in high-dimensional spaces. However, the method is sensitive
to the choice of parameters like perplexity and learning rate, and its computational cost can be substantial

for large datasets. Results are seen in Figures 18 and 19.

26

4.2 Extrinsic Evaluation Methodology

4.2 Extrinsic Evaluation

For extrinsic evaluation the potential range of benchmark tasks is vast. This necessitates the selection of
a meaningful subset that categorizes tasks by difficulty. This subset includes tasks such as classifying proteins
(see Section 4.2.2) and classifying variants (see Section 4.2.1). These classification tasks serve as practical
benchmarks to assess the performance of GenSLM embeddings across varying levels of task complexity. The
variations in task difficulty are discussed in Sections 4.2.1 and 4.2.1, with additional details on the chosen

learning method provided in Section 4.2.3.

4.2.1 Variant Classification

Variant Classification is deemed a harder task given the high sequence similarity across SARS-CoV-2
genomes (Zvyagin et al., 2023) and the longer sequence length. Because variant classification is the whole
genome, the amount of data given to the learner is the same as the number of sequences, while for protein
classification, the number of rows of the dataset is the number of proteins times the number of patients,
making the task of classifying variants more data constrained than classifying proteins. For performing the
classification, a classification and regression tree (CART) learner is utilized with no tuning for classifying
the variants Alpha, Beta, Gamma, Delta, Epsilon, Omicron, and Mu in Section 5.2.1. This method achieved
notable accuracy, as shown in Section 5.2.1.

In addition classification on variants was also performed with the a One-Hot-encoding representation of
the aligned 581 DNA sequences. This serves as one comparison for classification performance for alternative

representations of DNA.

4.2.2 Protein Classification

Because Proteins have large differences in sequence lengths and functions, classifying proteins should be
an easier task than classifying Covid variants. Moreover, we would expect with a shorter sequence (i.e., less
dimension reduction), the hierarchical diffusion model would have fewer local interactions to stitch together.
By extension, GenSLM would produce a higher quality embedding and a higher classification performance
than variants. Classification was performed by CART using protein labels and 582 embedding vectors as the
feature matrix. Classification was also performed on a 28 PCA dimensionally reduced transformation of the
GenSLM embedding matrix. This task is a hybrid of both extrinsic and intrinsic evaluation as it indicates
whether further dimension reduction can be performed on the embedding without losing any predictive

performance.

27

4.2 Extrinsic Evaluation — 4.2.3 Classification and Regression Trees Results

4.2.3 Classification and Regression Trees

Classification and Regression Tree (CART) was the chosen learner for performing extrinsic evaluation
based on its simplicity and popularity for supervised learning tasks in the machine learning community. It was
important that a simple and interpretable learner was chosen as information retrieval from the embedding
space should be minimally intensive in order for the embedding algorithm to add value to bioinformatic
workflows. Hence, all training was done with 20/80 test-train splits with no tuning of hyperparameters.

The Classification and Regression Tree (CART) is a type of predictive model that can produce intuitive,
interpretable models resembling a flowchart-like structure. This technique involves segmenting the predictor
space into distinct and non-overlapping regions for which simple predictions are made (Breiman, 2017).
Given the dependent variable for this study is categorical, the prediction is often the mode of the category.
The primary appeal of CART lies in the simplicity of its results producing a sequence of "if-then" decision
rules that are straightforward to understand and implement.

The process of building a decision tree using CART methodology involves repeatedly splitting the data
into further subsets based on feature values (Breiman, 2017). This splitting process, called binary recursive
partitioning, starts at the root of the tree and branches down to the leaves. At each node, the tree algorithm
selects the best split based on a specific criterion that aims to maximize the homogeneity of the resultant
subgroups. Optimality criteria such as the Gini index for classification tasks or variance reduction for
regression guide these splits. However, allowing the tree to grow unrestrictedly until each leaf is pure leads
to models that are highly complex and overfit to the training data.

To mitigate overfitting, CART incorporates a strategy known as pruning, which involves trimming
down the tree after it has been grown. Pruning reduces the size of the tree by removing sections that
provide little power in predicting the target variable, and simplifies the model and potentially improving
its generalizability to new data. By balancing model complexity and fit, pruning helps maintain a robust
model that performs well not only on the training dataset but also on external validation sets. The Python
function DecisionTreeClassifier was used from the sklearn.tree module for performing all classifications

produced in Figures 20 , 21, 22, and 23.

5 Results

Our analysis heavily utilizes data visualizations (unsupervised learning) to communicate the results of
our intrinsic and extrinsic evaluations. The results of this study are detailed in the following subsection and

demonstrate the utility of GenSLM in bioinformatic workflows.

28

5.1 Intrinsic Evaluation Results

5.1 Intrinsic Evaluation

5.1.1 Redundancy

5.1.1.1 Singular Value Decomposition

Using a SVD, as seen in Figure 33, the embedding matrix is still highly redundant with only seven
components explaining 99.68% of the variance. The high cumulative proportion explained indicates the
chosen output dimensions of 512 elements in the GenSLM algorithm could possibly have been revised to
have fewer dimensions without sacrificing information. For example, in the paper by Jing et al. (2019), 16

embedding algorithms were tested, and only two algorithms had 20 dimensions or higher (Jing et al., 2019).

5.1.2 Relative Preservation of Information

5.1.2.1 Distance Matrices

Appearing in the order A) top left, B) top right, C) bottom left, D) bottom right, as shown in Figure
11, are A) the sequence distance matrix, B) the embedding distance matrix, C) the absolute difference of
the sequence and the embedding matrix, and D) the regular difference of the sequence and the embedding
matrix. First, focusing on the sequence distance matrix (plot A), it should be noted that there are seven
faint outlines of blue squares running down the diagonal. Moving from left to right, these squares correspond
to variants in the following order: Alpha, Beta, Delta, Epsilon, Gamma, Mu, and Omicron. Hence, these
squares act like variant column names for all of the distance matrices in Figure 11. Thus, the blue squares
indicate what we would expect that all sequences are most closely related to other sequences of the same
variant. Moreover, in Plot A, Alpha variants have larger within-variant variation as indicated by the L-
shaped red striations. What can also be noticed is that there is a lot of heterogeneity between sequences
that is represented by a large variation of color from blue to red.

Comparing the Sequence Distance Matrix Plot (Plot A) and the Embedding Distance Matrix Plot (Plot
B), the blue squares in Plot B are more visible indicating that there are smaller distances between sequences
of the same variant than Plot A. The high visibility of the diagonal in plot B indicates that the embedding
clearly distinguishes sequences of different variants, and presumably, that classifying variants would be easier
with the embedded representation. However, the off-diagonals for plot B indicate that sequence-to-sequence
distances of the embeddings are far more homogeneous than the pairwise distances of the DNA sequences in
plot A. This finding is shared by the lower left and right plots which show how very fine information for the

pairwise distances of sequences has been lost in the embedding matrix produced by GenSLM.

29

5.1 Intrinsic Evaluation — 5.1.2 Relative Preservation of Information Results

Meanwhile, looking at the radial Dendrogram of the embeddings produced in Figure 12, all variants now
cluster perfectly, whereas in the Exploratory Data Analysis, the radial Dendrogram of the raw sequences in
Figure 7 did not cluster perfectly. This confirms the results from the distance matrices, which show that
that the embedding helps force the separation of variants. However, it can shown that some information was
distorted in the embedding process as indicated by the differing locations of the Wuhan reference between
Figure 7 and Figure 12. The shift in the location of the Wuhan sequence indicates that the genetic distance

from the original sequence data was not preserved in the transformation process of the GenSLM Embedding.

5.1.2.2 Kullback—Leibler Divergence

Both the discrete and continuous KL Divergence in the left and middle panels of Figure 13 measure
the divergence of individual sequences from the reference. In the Discrete case shown in the left panel, the
positioning of variants roughly matches the results from the raw sequences in the Exploratory Data Analysis
Section. For example, in Figure 13, the Alpha variant (in red) has the largest divergence from the Wuhan
reference sequence compared to any other variant. This relationship is also seen in Figure 8.

Comparing the discrete and continuous KL Divergences in Figure 13, the Discrete KL Divergence (left
panel) does not show very good clustering of variants, while the continuous KL Divergence (middle panel)
shows a very clear separation of variants. However, variants Delta and Mu have a considerably higher
divergence from the reference in the continuous case (middle panel) than they do in the discrete case (left
panel). There is clearly a distortion in the divergence of Delta and Mu in the discrete case versus the
continuous. This distortion is also seen in the rearrangement of variants in the radial dendrograms from
Figure 7 to Figure 12. Such distortion of information is concerning as it could lead practitioners using the
embeddings to overestimate the genetic distance of the Delta and Mu variants from the reference strain, which
results in serious complications for subsequent analyses. Finally, in the third panel, a linear relationship does
not emerge when plotting the discrete versus continuous KL divergence. This means there is a fundamental

change in the representation of data before and after the GenSLM embedding.

30

5.1 Intrinsic Evaluation — 5.1.2 Relative Preservation of Information Results

Sequence Distan

i [T

ce Matrix Embedding Distance Matrix

T i
i
|
|

il
i
NS

|

B)

Value

l 010
I 005
000

LIE
[N S

il
L

Absolute Difference Distance Matrix Sequence - Embedding Distance Matrix

Value

l 0.10
I 0.05
000

Figure 11: Pairwise Sequence Distance Matrices Versus Euclidean Distance Embedding Matrices Across
Seven Variants

31

5.1 Intrinsic Evaluation — 5.1.2 Relative Preservation of Information Results

Variants
alpha

beta

delta
epsilon
gamma

mu

omicron
Wuhan-Hu-1

Figure 12: Radial Dendrogram for 581 Aligned Covid Sequence Embeddings with Wuhan-Hu-1 Reference
- See Figure 7 for Comparison -

32

Discrete KL Divergence

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

5.1 Intrinsic Evaluation — 5.1.3 Separability

Results

e w
‘ae

T gt

%o o
D o

Sede 08

S seme o o*
. ¢ .
CWAtey , e

LRty JPOERTN,

T
100

T T
200 300

T T
400 500

Sequence Id

600

Continous KL Divergence

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

o
2.

Wonst
" 0’e
J - s
-
s &
.
H °
i wvies
. °N
-
S o%e
° L 4
i
‘0‘ .
i T e
e oo, *
s o
.‘. : ..tl*-
.
3
T ; . .
T T T T T T T
[100 200 300 400 500 600
Sequence Id

Continous KL Divergence of Embeddings

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

Variants
[Hateha
beta
Eoamma
3 [cetta
. [epsiton
. I [Jomicron
.
S 0 e
L4 [}
H
.
:]
oo
'-

T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012

Discrete KL Divergence of Sequences

Figure 13: Discrete (DNA Sequences) Versus Continuous (Numeric Embeddings) KL Divergence Relative
to the Wuhan Reference Sequence

5.1.3 Separability

5.1.3.1 Linear Discriminant Analysis

For the LDA of proteins, as shown in Figure 14, the model perfectly separates all proteins. The zoomed-

in plot in Figure 14 shows that each dot in the zoomed-out plot is a cluster of proteins from the sequence

embeddings. This indicates that there is good separability of data from the GenSLM algorithm. On the

other hand, GenSLM does not have good separability when applied to variants. For example, LDA was not

able to separate variants Delta and Epsilon. For the LDA of proteins and variants, separability is harder to

achieve for highly similar sequences such as variants.

33

0.014

5.1 Intrinsic Evaluation — 5.1.3 Separability Results
Protein LDA of 581 Alligned Covid Sequence Embeddings
[]
40000 A
[]
20000 A °
[]
. Protein
IS ° E nsp6
[] [] []
= ‘ e M nsp7
04 ®
® o e N nsp8
[]
® nspi nsp9
° ° ° ® nsp10 Orf10
[]
® nspii Orf3a

g -20000 4 ® nspi2 Orf3b

D []

o ® nspi3 Orf6
® nspl4 Orf7a
® nspib Orf7b

T T T T ® nspl6 Orf8b
-50000 -25000 25000
® nsp2 Orf9b
® nsp3 Orf9c
3400 4 ® nsp4 S
® nsp5
3350 -
3300
3250 -
3200 -
4
6900 6800 6700 -6600
LDA1

Figure 14: Protein LDA Plot

34

5.1 Intrinsic Evaluation — 5.1.3 Separability Results

Variant LDA of 581 Alligned Covid Sequence Embeddings

)
100 4 [)
0A
-100 4
Variant
© alpha
-2007 ® beta
Al
< ° ® delta
9 ® epsilon
-300 ® gamma
Y e mu
T T T T © omicron
-200 200 400
77.04 ° ° g
° ¢ ® o ° :
° . . o ® ° .: o ‘e e o ° [.
J BN o 4 ° °
765 ° d o0 et see e ' o oo
000, g% 0“. ofgedy®® e o ° . e
L] L]
76.04 o. o :o ... ‘~ ¢ ° " s .
LIS ° ° % ° »®
° i ° e o0 ° . o o °
7554
d °
75.0 °
67.0 675 68.0
LDA1

Figure 15: Variant LDA Plot

5.1.3.2 Principal Component Analysis

Moving on to PCA, Figure 16 and 17 shows both variants and proteins are perfectly separable. This

indicates good separability from the GenSLM algorithm for both variants and proteins.

35

5.1 Intrinsic Evaluation — 5.1.3 Separability Results

Variant PCA of 581 Alligned Covid Sequence Embeddings

4
10
e [4
0+ []
[}
variant
°
© alpha
-104 ® beta
8 ® delta
o ® epsilon
® gamma
L4 mu
T T T T © omicron
20 -10 10
-17.00 4
-17.25 1
: []
-17.50 oo ‘%
0o We,*®
P "..” e & o™ .‘.)
-17.754
-18.00
22 24 19 18

2.0
PC1

Figure 16: Variant PCA Plot

36

5.1 Intrinsic Evaluation — 5.1.3 Separability Results
Protein PCA of 581 Alligned Covid Sequence Embeddings
15
L]
10
[]
54
. o o U R protein
. ° . i o o E ® nsp6
0+ ® " . .-. e M ® nsp7
° e N ® nsp8
° ° ® nspl ® nsp9
5 4 ° ® nspi0 e Orf10
e nsplt o Orf3a
o L] e nspl2 o Orf3b
O .
a 10 ® nspi3 Orf6
° ® nspl4 o Orf7a
® nspi5 o Orf7b
-15 4 : T ® nspi6 o Orf8b
-10 0 10
® nsp2 ® Orf9
44 ® nsp3 e Orf9c
0- . ®e © SBISHEITS G CEITRIRRETS & © omummame o © ® nsp4 e 8
® nsp5
0.2+
0.0
-0.2 ° o comammAD o
0.97 0.98 0.99 1.00 1.01
PCA1
Figure 17: Protein PCA Plot
5.1.3.3 t-Distributed Stochastic Neighbor Embedding

The t-SNE analysis was a third method for examining the separability of the GenSLM embeddings.

Similar to the PCA analysis, the t-SNE shows perfect separability of both variants and proteins.

37

5.1 Intrinsic Evaluation — 5.1.3 Separability Results

Variant t-SNE of 581 Alligned Covid Sequence Embeddings

o~
(@]
N
., e
* »
20 '.:
Variant
% \' o.“o'. © alpha
D ¢
0 .”.} ° ® beta
\ ® delta
.q ® epsilon
% ® gamma
® mu
l @ omicron
220 [}
e
]
L
-20 0 20 40
C1

Figure 18: t-SNE Clustering of Variants from Embedded Sequences

38

5.2 Extrinsic evaluation Results

Protein t-SNE of 581 Alligned Covid Sequence Embeddings

o
(&)
[]
&
50 » “ ® . Protein
. . ~ o E ® nspb
° ’ o M ® nsp7
. ° - @ ° o N ® nsps

' o ® nspl ® nsp9
° ° 3
~ ° &‘ ® nspl0 e Orf10
e ® nspll e Orf3a
; " ® nspl2 e Orf3b
0 » * & ? o nspl3 o Off6
f ® p “ ® nspld o Orffa
* e nspl5 o Orffb

Q e nspl6 o Orféb
9
° ® nsp2 o Orfdb

® nsp3 e Orfoc
- e % L
®

P ® nspd o S
' ® nspb
-50

® <
.*"0 " -
4

40 0 40
C1

Figure 19: t-SNE Clustering of Proteins from Embedded Sequences

5.2 Extrinsic evaluation

5.2.1 Variant Classification

The CART model fit for classifying variants produces the tree as seen in Figure 20. Notably, the
classification rate is near perfect, with a classification rate of 97.71% and four misclassified variants, see
Table 2. Overall, the classification rate of 97.71% reflects well on the GenSLM algorithm given that a simple
learner (CART) can classify nearly 100% of variants using the embedded GenSLM data. The CART model
classified the embedding data with ten leaves. In contrast, another CART model, using One-Hot-encoded
whole genome sequence data produced a tree with 341 leaves with only a 10.28% classification rate, see
Figure 21. The deep tree shown in Figure 21 is the result of the known flaw of using decision tree-based

learners on One-Hot-Encoded data. However, the magnitude of the difference in classification from 97.71% to

39

5.2 Extrinsic evaluation — 5.2.1 Variant Classification

Results

10.28% gives context to the size of performance difference that can be observed between different encodings

of genomic data. The difference between classification performance further highlights the value of GenSLM

and the embedding algorithms in general.

E276 <= -0.005
gini = 0.856
samples = 406
value = [53, 53, 58, 61, 64, 61, 56]
class = gamma

True

\:‘alse

E469 <= -0.004
gini = 0.833
samples = 340
value = [53, 53, 58, 59, 0, 61, 56]
class = mu

S

E37 <=-0.001
gini = 0.8
samples = 279
value = [53, 53, 58, 59, 0, 0, 56]

class = epsilon

N

E12 <=-0.001
gini =0.75
samples =219
value = [53, 53, 57, 0, 0, 0, 56]
class = delta

E170 <= 0.003
gini = 0.666
samples = 162
value = [53, 53, 0, 0, 0, 0, 56]
class = omicron

/

E262 <=-0.004
gini=0.5
samples = 106
value = [53, 53, 0, 0, 0, 0, 0]
class = alpha

gini = 0.0
samples = 53
value = [0, 53, 0, 0, 0, 0, 0]
class = beta

Table 2: Misclassified Variants

Figure 20: CART Variant Classification (97.71%) on Aligned Sequence Embeddings

Sequence ID Actual Predicted
244 delta epsilon
268 epsilon delta
335 gamma epsilon
408 gamma epsilon

40

5.2 Extrinsic evaluation — 5.2.1 Variant Classification

Results

Figure 21: CART Variant Classification (10.28%) of Aligned Sequence One-hot-encodings
- the image was cropped showing only 82 leaves out of 341 shown (zoom in to see tree) -

41

5.2 Extrinsic evaluation — 5.2.2 Protein Classification Results

5.2.2 Protein Classification

Two types of protein classification were performed using CART. The difference in each analysis was
the data used. The first analysis used the GenSLM embedding data, while the second analysis used 28
components from the PCA reduction of the GenSLM embedding.

The CART classification task using the regular embedding correctly classified 100% of proteins, as seen
in Figure 22. This result demonstrates that the GenSLM algorithm effectively preserved the data. While
the tree looks complex with a tree depth of 25, there are 29 proteins to classify which indicated that the tree
is not over-fit. There are several possible reasons why the CART classification worked better for proteins
than variants. One explanation could be due to the way the protein data was embedded and structured.
By embedding the proteins from 582 sequences and then further expanding each sequence variant into 29
additional rows (for each protein), the feature matrix for proteins was significantly enlarged to 16,878 rows
(582 * 29 = 16,849). The large increase in the number of rows provides more data which might have
provided more useful information for accurately classifying proteins. Another possible explanation is that
proteins differ more in their genomic characteristics than variants do. For instance, different Covid proteins
have vastly different amounts of nucleotides. The protein ‘nspl3’ has 39 nucleotides while ‘nsp3’ has 5,835
nucleotides. On the other hand, the CART variant classification task was more difficult because the sequence
length of each embedded genome were all of the same length!”. Inherently groups are easier to classify when
they naturally differ. There is a lot of natural variation in protein nucleotides compared to whole genomes.

For classification using the PCA reduced feature matrix, as seen in Figure 23, the classification rate
is still 100%, and only using 28 dimensions instead of GenSLM’s 512. This finding indicates that further
dimension reduction is possible within the GenSLM embedding without impacting classification performance,
highlighting its redundancy. Thus, while GenSLM scores favourably in terms of separability and preservation

of information, the GenSLM embedding is still redundant.

17 As shown by the vertical line in Figure 6.

42

5.2 Extrinsic evaluation — 5.2.2 Protein Classification Results

" a, SHE
1 iy 29 404

G

g e s
iy
s

o
it
5

Figure 22: CART Protein Classification (100%) for Aligned Sequence Embeddings (581 patients)

43

5.2 Extrinsic evaluation — 5.2.2 Protein Classification Results

o S 7 2 0

Figure 23: CART Protein Classification (100%) of 29 PCA Components (581 patients)

44

Conclusion

6 Conclusion

This study aimed to assess the quality of GenSLMs embeddings through intrinsic and extrinsic evalu-
ations. It focused on characterizing the embeddings in terms of redundancy, separability, and information
preservation using established methods. The results demonstrated multiple favorable aspects of the GenSLM
embedding alongside several suboptimal outcomes. GenSLM performed well in classifying variants and pro-
teins when using the learner CART with classification rates of 97.71% and 100%, respectively. Strikingly,
for variant classification with CART, there was a +87.43% difference in the classification rate between
the GenSLM embedding and the One-Hot-Encoded versions of the feature matrix. In addition, GenSLM
performed very highly for separability. However, less favorable aspects resulted from the preservation of
information and redundancy analyses. Distance matrices showed that fine scale differences between whole
genomes were lost in the embedding transformation process. Furthermore, in comparing continuous and
discrete KL divergence, GenSLM distorted the genetic distance of Delta and Mu variants from the Wuhan
reference. Additionally, GenSLM achieved only modest success in preserving semantic distance and also
displayed considerable dimensional redundancy, both of which are suboptimal outcomes.

Although GenSLM’s embeddings excel in terms of separability and downstream task performance, these
results are specific to whole genome and protein-focused DNA sequence analyses. Additionally, no other
neural network embedding algorithms were compared to GenSLM, nor were alternative learners besides
CART employed for evaluating classification tasks. For future research, benchmarking GenSLM are rec-
ommended against other neural network embedding algorithms like DNABERT2 and HyenaDNA. Future
research should also include tasks assessing whole genome data such as variant classification and more sen-
sitive analyses like nucleotide frequency regression. A comprehensive benchmark across various algorithms
would provide practical insights for practitioners to choose the most suitable algorithm for their specific

needs.

45

References

7 References

References

Sajia Akhter, Ramy K Aziz, Mona T Kashef, Eslam S Ibrahim, Barbara Bailey, and Robert A Edwards.

Kullback leibler divergence in complete bacterial and phage genomes. PeerJ, 5:€4026, 2017.
Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

Christof Angermueller, Tanel Parnamaa, Leopold Parts, and Oliver Stegle. Deep learning for computational

biology. Molecular systems biology, 12(7):878, 2016.

Georgios Arvanitidis, Lars Kai Hansen, and Sgren Hauberg. Latent space oddity: on the curvature of deep

generative models. arXiv preprint arXiv:1710.11379, 2017.

Chongzhi Bai, Qiming Zhong, and George Fu Gao. Overview of sars-cov-2 genome-encoded proteins. Science

China Life Sciences, 65(2):280-294, 2022.

Ulrich Bodenhofer, Enrico Bonatesta, Christoph Horejs-Kainrath, and Sepp Hochreiter. msa: an r package
for multiple sequence alignment. Bioinformatics, 31(24):3997-3999, 2015. doi: 10.1093/bioinformatics/

btv494.
Leo Breiman. Classification and regression trees. Routledge, 2017.

D. Charif and J.R. Lobry. dist.alignment: Pairwise distances from aligned protein or dna/rna
sequences. https://www.rdocumentation.org/packages/seqinr/versions/4.2-36/topics/dist.

alignment, 2024. Accessed: 2024-05-24.

Gabriele Corso, Zhitao Ying, Michal Pandy, Petar Velickovi¢, Jure Leskovec, and Pietro Lio. Neural distance
embeddings for biological sequences. Advances in Neural Information Processing Systems, 34:18539-18551,

2021.

I. Csiszar. I-Divergence Geometry of Probability Distributions and Minimization Problems. The Annals of
Probability, 3(1):146 — 158, 1975. doi: 10.1214/aop/1176996454. URL https://doi.org/10.1214/aop/

1176996454.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word analogies.

arXw preprint arXiw:1810.04882, 2018.

46

https://www.rdocumentation.org/packages/seqinr/versions/4.2-36/topics/dist.alignment
https://www.rdocumentation.org/packages/seqinr/versions/4.2-36/topics/dist.alignment
https://doi.org/10.1214/aop/1176996454
https://doi.org/10.1214/aop/1176996454

References

Brian S. Everitt and Graham Dunn. Discrimination, Classification and Pattern Recognition, chap-
ter 11, pages 248-270. John Wiley & Sons, Ltd, 200la. ISBN 9781118887486. doi: https:
//doi.org/10.1002/9781118887486.ch11l. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

9781118887486.ch11.

Brian S. Everitt and Graham Dunn. Principal Components Analysis, chapter 3, pages 48-73. John Wiley &
Sons, Ltd, 2001b. ISBN 9781118887486. doi: https://doi.org/10.1002/9781118887486.ch3. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9781118887486.ch3.

Dariush D Farhud and Nooshin Mojahed. Sars-cov-2 notable mutations and variants: a review article.

Iranian Journal of Public Health, 51(7):1494, 2022.

Erfaneh Gharavi, Aaron Gu, Guangtao Zheng, Jason P Smith, Hyun Jae Cho, Aidong Zhang, Donald E
Brown, and Nathan C Sheffield. Embeddings of genomic region sets capture rich biological associations

in lower dimensions. Bioinformatics, 37(23):4299-4306, 2021.

Hitoshi Iuchi, Taro Matsutani, Keisuke Yamada, Natsuki Iwano, Shunsuke Sumi, Shion Hosoda, Shitao Zhao,
Tsukasa Fukunaga, and Michiaki Hamada. Representation learning applications in biological sequence
analysis. Computational and Structural Biotechnology Journal, 19:3198-3208, 2021. ISSN 2001-0370. doi:
https://doi.org/10.1016/j.csbj.2021.05.039. URL https://www.sciencedirect.com/science/article/

pii/S2001037021002208.

Xiaoyang Jing, Qiwen Dong, Daocheng Hong, and Rugian Lu. Amino acid encoding methods for protein
sequences: a comprehensive review and assessment. IEEE/ACM transactions on computational biology

and bioinformatics, 17(6):1918-1931, 2019.
Daniel Jurafsky and James H Martin. Speech and language processing 3rd edition draft, 2019.

Kaggle. Stanford ribonanza rna folding competition leaderboard. https://www.kaggle.com/competitions/

stanford-ribonanza-rna-folding/leaderboard, 2023. Accessed: 2014-04-07.

Shubhangi Kandwal and Darren Fayne. Genetic conservation across sars-cov-2 non-structural proteins—

insights into possible targets for treatment of future viral outbreaks. Virology, 2023.

Nada Lavrac¢, Vid Podpec¢an, and Marko Robnik—gikonja. Representation Learning: Propositionalization and

Embeddings. Springer, 2021.

Zhiyuan Liu and Maosong Sun. Representation Learning and NLP, pages 1-27. Springer Nature Singapore,
Singapore, 2023. ISBN 978-981-99-1600-9. doi: 10.1007/978-981-99-1600-9 1. URL https://doi.org/

10.1007/978-981-99-1600-9_1.

47

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118887486.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118887486.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118887486.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118887486.ch3
https://www.sciencedirect.com/science/article/pii/S2001037021002208
https://www.sciencedirect.com/science/article/pii/S2001037021002208
https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding/leaderboard
https://www.kaggle.com/competitions/stanford-ribonanza-rna-folding/leaderboard
https://doi.org/10.1007/978-981-99-1600-9_1
https://doi.org/10.1007/978-981-99-1600-9_1

References

National Human Genome Research Institute. Base pair. Web page, May 2024. URL https://www.genome.

gov/genetics-glossary/Base-Pair.

NCBI Reference Sequence. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete
genome. National Center for Biotechnology Information, 2023. URL https://www.ncbi.nlm.nih.gov/

nuccore/NC_045512.2/. Accessed: 04/23,/2024.

Nextstrain. Genomic epidemiology of novel coronavirus - global subsampling, 2022. URL https:
//nextstrain.org/ncov/gisaid/global/2022-01-267branchLabel=none&f_clade_membership=21AY%
20%28Delta’29, 21C%20%28Epsilon’29, 21G%20%28Lambda’,29, 21H%20%28Mu’%29, 211%20%28Delta
29,213%20%28Delta%29, 21K%20%280micron’%29, 21L%20%280micron’29&l=radial&m=div. Built with
nextstrain/ncov. Maintained by the Nextstrain team. Data updated 2022-01-26. Enabled by data from
GISAID. Showing 2156 of 3044 genomes sampled between Jan 2021 and Jan 2022. Filtered to 21A (Delta)
(39), 21C (Epsilon) (5), 21G (Lambda) (5), 21H (Mu) (16), 211 (Delta) (157), 21J (Delta) (1544), 21K
(Omicron) (377), 21L (Omicron) (13).

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes, Stefano
Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range genomic sequence

modeling at single nucleotide resolution. Advances in neural information processing systems, 36, 2024.

Emmanuel Paradis, Martin Smith, and Damien de Vienne. plot.phylo: Plot phylogenies. https://rdrr.

io/cran/ape/man/plot.phylo.html, 2024. Accessed: 2024-05-24.

Thomas Peters. Data-driven science and engineering: machine learning, dynamical systems, and control:
Vol. 60, No. 4. Cambridge University Press, 2019. ISBN 9781108422093. 472 pp., £49.99 (hardback).

Level: postgraduate. Scope: textbook. Taylor & Francis.

Sgren Kamaric Riis and Anders Krogh. Improving prediction of protein secondary structure using structured

neural networks and multiple sequence alignments. Journal of Computational Biology, 3(1):163-183, 1996.

ScienceDirect. Genetic code. Encyclopedia of Energy, 2004. URL https://www.sciencedirect.com/
topics/physics-and-astronomy/genetic-code. A species is the aggregate genetic code, and its phe-
notype is the organism that can generate a sufficient energy profit to reproduce at some place along each

possible environmental gradient.

Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong Li, Rodrigo Lopez,
Hamish McWilliam, Michael Remmert, Johannes S6ding, et al. Fast, scalable generation of high-quality

protein multiple sequence alignments using clustal omega. Molecular systems biology, 7(1):539, 2011.

48

https://www.genome.gov/genetics-glossary/Base-Pair
https://www.genome.gov/genetics-glossary/Base-Pair
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2/
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2/
https://nextstrain.org/ncov/gisaid/global/2022-01-26?branchLabel=none&f_clade_membership=21A%20%28Delta%29,21C%20%28Epsilon%29,21G%20%28Lambda%29,21H%20%28Mu%29,21I%20%28Delta%29,21J%20%28Delta%29,21K%20%28Omicron%29,21L%20%28Omicron%29&l=radial&m=div
https://nextstrain.org/ncov/gisaid/global/2022-01-26?branchLabel=none&f_clade_membership=21A%20%28Delta%29,21C%20%28Epsilon%29,21G%20%28Lambda%29,21H%20%28Mu%29,21I%20%28Delta%29,21J%20%28Delta%29,21K%20%28Omicron%29,21L%20%28Omicron%29&l=radial&m=div
https://nextstrain.org/ncov/gisaid/global/2022-01-26?branchLabel=none&f_clade_membership=21A%20%28Delta%29,21C%20%28Epsilon%29,21G%20%28Lambda%29,21H%20%28Mu%29,21I%20%28Delta%29,21J%20%28Delta%29,21K%20%28Omicron%29,21L%20%28Omicron%29&l=radial&m=div
https://nextstrain.org/ncov/gisaid/global/2022-01-26?branchLabel=none&f_clade_membership=21A%20%28Delta%29,21C%20%28Epsilon%29,21G%20%28Lambda%29,21H%20%28Mu%29,21I%20%28Delta%29,21J%20%28Delta%29,21K%20%28Omicron%29,21L%20%28Omicron%29&l=radial&m=div
https://rdrr.io/cran/ape/man/plot.phylo.html
https://rdrr.io/cran/ape/man/plot.phylo.html
https://www.sciencedirect.com/topics/physics-and-astronomy/genetic-code
https://www.sciencedirect.com/topics/physics-and-astronomy/genetic-code

References

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning

research, 9(11), 2008.
W Wirth and Duchene S GISAIDR. programmatically interact with the gisaid databases, 2022.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Efficient
foundation model and benchmark for multi-species genome.” arxiv. arXiv preprint ArXiv:2306.15000,

2023.

Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin
Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, et al. Genslms: Genome-scale language models
reveal sars-cov-2 evolutionary dynamics. The International Journal of High Performance Computing

Applications, 37(6):683-705, 2023.

49

Appendices

8 Appendices

8.1 Figures

80
|

Density
60
!

40

T T T T T T T
-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

Embedding Elements

Figure 24: Density Plots of of 581 Plus Reference Embedding Vectors

sbatch embed_var_aj.sh shatch embed_prot_aj.sh

variant_preproc.py protein_preproc.py

[Read in Feather Dataframe] [Read in Feather Dataframe]

[Subset Dataframe per Variant for each an Array via SLURM_ARRAY_TASK_ID] [Subset Dataframe per Protein for each Array via SLURM_ARRAY_TASK_ID

[Write each Variant to a .h5 file] [Write each Protein to a . h5 file]

GenSLM. py GenSLM. py

[Embed each .h5 Variant Sequence] [Embed each .h5 Protein Sequence]

[Export Embeddings to .h5 File Per Each Variant] [Export Embeddings to .h5 File for each Protein]

Figure 25: Embedding Pipelines

50

8.1 Figures

Appendices

Hamming Distance for Covid Varaint Alpha

Figure 26: Hamming Distance of Aligned Alpha Proteins to Wuhan Reference Sequence

ol

—— —

e EE——
I

I

w =z 2 O O Z O 2 O Z O 3 > o 2 3 Z 3 O 2 O 2 3z 3z 3z > 0O
€ 3 I T 3 B 3 T 3 T g 3 ¢ ¥ ¢ ¥ F T 3 v & T I g 3
7S] T & & @ 2 =3 B > ® 2 % 2 g8 T 9 =2 T T T >
[[IR - o > T o o © ® o o
Proteins

Sequences

100

80

60

40

20

T =11 1 =

e i

=1 1]

1 T

8.1 Figures Appendices

Hamming Distance for Covid Varaint Beta

DDO
j-3:31
T
TR383

0!
@
)

17
@
T

17
©
Jodod I

2

17

@
A U U O

3

Seq_ 9

R

NWDO.
B BOSBHOBEROORNNS | PURBND NOBHB RGBT

> > o e} > o e} > o e} > > > > o m > o e} > = > > > > > >

€ 5 3 3 4 F3 3 v T 3 B & b B 3F € 3 3J 2 € 4 5 & L B

© o 3 <3 S © =~ o =& s @ N e T N *® = =8 Y 35 &
Proteins

Figure 27: Hamming Distance of Aligned Beta Proteins to Wuhan Reference Sequence

52

100

80

60

40

20

Sequences

8.1 Figures Appendices

Hamming Distance for Covid Varaint Gamma

odsu
gdsu
qa8yo
egUo
1dsu
q/40
zdsu
¢ldsu
Ldsu
gdsu
940
Gldsu
gldsu
gdsu
9640
Jdsu
gdsu
}1dsu
qeHo
0LHo
olLdsu

ZLdsu
9640

pdsu
e/o

Proteins

Figure 28: Hamming Distance of Aligned Gamma Proteins to Wuhan Reference Sequence

53

Sequences

100

80

60

40

20

8.1 Figures

Appendices

Hamming Distance for Covid Varaint Delta

Tl L)

T s =

ecHo

pdsu

> > > o) > > > o o > o o > m > [e] > > > > o > o

€ 4 3 3 & B & 7 oz & z 3F B g 3 B 8 3 B 3F3 B 3

S % ¥ F T 2 =3 S 3 g = 2 2 &% 2 % R 3 203

w (=2} o o - > N
Proteins

Figure 29: Hamming Distance of Aligned Delta Proteins to Wuhan Reference Sequence

54

gdsu

100

80

60

40

20

Sequences

8.1 Figures Appendices

Hamming Distance for Covid Varaint Epsilon

— T S

T

o) > = o) > > > > > o) o > o) > m > o > o) > > > > o) > o >

3z 3 3 € 4 & 8 3B 3 3 B 3 B 5 3 B 3 & 8 & 3B 3 3B > 5

s * o & o = > *® © D = a5 D > - ©° ° g 3 G @
Proteins

Figure 30: Hamming Distance of Aligned Epsilon Proteins to Wuhan Reference Sequence

95

Sequences

8.1 Figures

Appendices

Hamming Distance for Covid Varaint Omicron

zdsu

> e)

> o) o > > m o) o) > > > > > =z > o) > o o) > o > > > >

€ 3 3 € B 3 2 3 ¥ 2 B 3 B 3 3 3 3 € 3 8 % B 3

S 3 3 8% B 3 2 2 2 =, -3 = 3 2 03 S 3 B 2 2%

N w S (&) o o -
Proteins

Figure 31: Hamming Distance of Aligned Omicron Proteins to Wuhan Reference Sequence

56

T
5 DOONRRON St

S0,

U U U U U U
SO

NEREEUNSE ESODRA N B GHOBHBIN SO SBAAIBNE S NOW PP

N
foS
5

Sequences

100

80

60

40

20

Appendices

Hamming Distance for Covid Varaint Mu

8.1 Figures

=3
o =]
- o © <

_— seousnbeg

e ——
S S i S S SN S S R
i M i i A S S Sk

U U U U U U U U DDNDDU)

*H nsp16
nsp8

— nsp13

i

eq_b8;

nsp12

nsp2

nsp6

_H Orf7a

nsp1

Orf7b

nsp11

nsp7

nsp10

Orf3b

Orfe

Orf9c

nsp9

“ 0orf10

_H M
nsp5

B nsp15

H nsp14

L Orf3a

— nsp3

Orf9b

Orfgb

57

Proteins

Figure 32: Hamming Distance of Aligned Mu Proteins to Wuhan Reference Sequence

Appendices

8.1 Figures

Cumulative Explained Variance

1.0

0.8

0.6

0.4

0.2

Cumulative Explained Variance by Number of Dimensions

Scree Plot of Singular Values

~
S
r=1, cve =0.9968
=4
© | =6
r=6, cve =0.8752 o p=’
]
[=)
<
r=4, cve =0.6142 W
8
=)
2
)
] o
~
S
-
g
o L
2
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Number of Dimensions Number of Dimensions

Figure 33: SVD for 581 Aligned Whole Genome Sequences

58

© 0 N O U R W N =

W ONONONN NN NN NN E R e e R e e
O © 0w N O U R W N E O © N U W N = O

31
32
33
34

35
36
37
38
39
40
41
42
43

8.2 Code Appendices

8.2 Code

8.2.1 Pre-Processing

import argparse
import hb5py

import pandas as pd

###7# PARSING PIPED ARGUMENTS 7774
description text = (
"Script for loader .feather file of dataframe of gisaid sequences and then "
"wrangles df to a list of sequences indexing the protein type by the ARRAY_JOB_ID"
)
parser = argparse.ArgumentParser(description=description_text)
parser .add_argument (
"—in",
"—featherIn",
type=str,
required=True,

"

help="Path to the input feather file with original DNA sequences.",

)

parser .add_argument (
"out",
"—hdf50utputPath",
type=str ,

required=True,

help="The root Path to save the output sequences in HDF5 format. ie /user/file/",

)
parser .add argument (
"aid "
)
" arrayId",
type=int ,

required=True,
help="adjusted array job id. This value indexes the dataframe column allowing different proteins
get different jobs",
)
args = parser.parse_args ()

protien df = pd.read feather(args.featherIn)

to

'

proteins = ['mspl', 'msp2', 'mnsp3', 'nsp4', 'nsp5', 'nsp6', 'nsp7', 'nsp8', 'msp9', 'mspl0', 'mspll',
nspl2', 'nspl3', 'nspl4', 'mnspl5', 'mnspl6', 'E', '™M', 'S', 'N', 'Orf3a', 'Orf3b', 'Orf6', 'Orf7a’',
Orf7b ', 'Orf8b', 'Orf9b', 'Orf9c', 'Orfl0']

protein _df single p = protien_ df[proteins|[args.arrayld]]. tolist ()

DNA = protein_df_single_p
Write the mutated sequences to an HDF5 file :
with hb5py. File (args.hdf50utputPath, "w") as hdf:

hdf.create_dataset ("sequence", data=DNA)

print (f"Written to {args.hdf50utputPath}")

'

Listing 1: Protein Pre-processing Script - protein_preproc.py

59

© 00 N O U ks W N =

WONONONN NN NN NN R R e e e e
S © 0 N O O A W N B O © 0 N O Uk W N R~ O

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

8.2 Code — 8.2.1 Pre-Processing

Appendices

import argparse
import h5py

import pandas as pd

w44 PARSING PIPED ARGUMENTS #4444
description _text = (

"Script for loader .feather file of dataframe of gisaid sequences and then "

"wrangles df to a list of sequences indexing the variant type by the ARRAY_ JOB_ID"
)
parser = argparse.ArgumentParser(description=description_text)
parser .add argument (

" in”,_
"—featherIn",
type=str ,
required=True,

"

help="Path to the input feather file with original DNA sequences.",

)

parser.add_argument (
"out",
"—hdf50utputPath",
type=str ,

required=True,

help="The root Path to save the output sequences in HDF5 format. ie /user/file/",

)

parser.add_argument (
"_aid",
"—arrayId",
type=int ,

required=True,
help="adjusted array job id. This value indexes the orfConfig.yml allowing different
different jobs",
)
args = parser.parse_args()

variant _df = pd.read_feather(args.featherIn)

variants = ["alpha", "beta", "gamma", "delta", "epsilon", "omicron", "mu", "lambda"]
variant _df_ single v = variant_df[variant_df["variant"] == variants|[args.arraylId]]
variant _df_single_ v = variant_df_single_v]["sequence"]

variant _list_single v = variant_df_single_ v.tolist ()

DNA = variant_list single_ v
Write the mutated sequences to an HDF5 file :
with h5py.File (args.hdf50utputPath, "w") as hdf:

hdf.create dataset ("sequence", data=DNA)

print (f"Written to {args.hdf50utputPath}")

variants

to get

Listing 2: Variant Pre-processing Script - variant_preproc.py

60

© 00 N O U kR W N

NONON NN NN R R R R e e
S A W N R O © W0 N O U W N~ O

27
28
29
30
31
32
33
34
35
36
37
38

8.2 Code — 8.2.2 Embedding Appendices

8.2.2 Embedding

#!/bin/bash

#SBATCH ——account=mayocancerai

#SBATCH —job-—name=dhintz_ proteins_npat_ 400_ array
#SBATCH mail—type=ALL

#SBATCH —mail—user=dhintz1 Quwyo . edu

#SBATCH time=1-—-00:00:00

#SBATCH —partition=beartooth—hugemem

H#SBATCH ——error=slurms/%x_%A. err

#SBATCH —ntasks=1

#SBATCH —cpus—per—task=1

#SBATCH ——array=0—28

#SBATCH —mem—60G

#SBATCH output=/pfs/tcl/project/mayocancerai/GenSLM/job_array_out/arrays_ex01_ %A %a.out

GENSLM_PATH="/pfs /tcl/project /mayocancerai/GenSLM"
INPUT_FEATHER="$ {GENSLM_PATH} /proteins_all_seqs_df.feather"

POST_PROC_HDF5 OUT="${GENSLM_PATH}/data_protein/prot$ {SLURM_ARRAY TASK ID} seq_400_patients.h5"
EMBEDDED HDF5 OUT="${GENSLM PATH}/data protein/prot${SLURM_ ARRAY TASK ID} emb 400 patients.h5"

module load arcc /1.0 miniconda3/23.11.0

conda activate /pfs/tcl/project/mayocancerai/mayocancerai

Ezplicitly use the Python interpreter from the specific Conda environment

PYTHON_EXEC="/pfs/tcl/project /mayocancerai/mayocancerai/bin/python"

${PYTHON_EXEC} ${GENSLM_PATH}/protein_preproc.py —in "${INPUT_FEATHER}" —out ${POST_PROC_HDF5_ OUT} —
arrayld ${SLURM_ ARRAY TASK ID}

if [$? —ne 0]; then
echo "Failed to execute protein_preproc.py for Protein ${SLURM_ARRAY TASK ID}."
exit 1
fi
${PYTHON EXEC} ${GENSLM PATH}/GenSLM.py —in ${POST PROC HDF5 OUT} —out ${EMBEDDED HDF5 OUT}

if [$? —ne 0]; then
echo "Failed to execute GenSLM.py for Protein ${SLURM_ARRAY TASK ID}."
exit 1

fi

echo "Emebedding for Protein ${SLURM_ARRAY_ TASK ID} completed successfully!"

Listing 3: Protein Embedding Script - embed_prot_aj.sh

61

© 00 N O U ks W N =

I I R N T e e s s e e
QO A W N R O © 0 N O kA W N~ O

27
28
29
30
31
32
33
34
35
36
37
38

8.2 Code — 8.2.2 Embedding Appendices

#!/bin/bash

#SBATCH —account=mayocancerai

#SBATCH job—name=dhintz_wvaraints_npat_400_array
#SBATCH —matl—type=ALL

#SBATCH —mail—user=dhintzl Quwyo . edu

#SBATCH —time=1—00:00:00

#SBATCH —partition=beartooth—hugemem

H#SBATCH ——error=slurms/%x_%A. err

#SBATCH —ntasks=1

#SBATCH —cpus—per—task=1

#SBATCH —array=0—"7

#SBATCH mem—=60G

H#SBATCH —output=/pfs/tcl/project/mayocancerai/GenSLM/job_array_out/arrays_ex01_%A %a . out

GENSLM_PATH="/pfs /tcl/project /mayocancerai/GenSLM"

INPUT_FEATHER="$ {GENSLM_PATH} /variant _dfs.feather"

POST PROC_HDF5 OUT="${GENSLM PATH}/data variant/var${SLURM_ ARRAY TASK ID} seq 400 _ patients.h5"
EMBEDDED_HDF5_OUT="$ {GENSLM_PATH}/data_variant/var${SLURM_ARRAY TASK ID} emb_400_patients.h5"

module load arcc /1.0 miniconda3 /23.11.0

conda activate /pfs/tcl/project/mayocancerai/mayocancerai

Explicitly use the Python interpreter from the specific Conda enwvironment

PYTHON EXEC="/pfs/tcl/project/mayocancerai/mayocancerai/bin/python"

${PYTHON_ EXEC} ${GENSLM_ PATH}/variant preproc.py —in "${INPUT FEATHER}" —out ${POST_ PROC_HDF5 OUT} —
arrayld ${SLURM_ARRAY_TASK ID}

if [$? —ne 0]; then
echo "Failed to execute variant_preproc.py for Variant ${SLURM_ARRAY_TASK ID}."
exit 1
fi
${PYTHON EXEC} ${GENSLM PATH}/GenSLM.py —in ${POST PROC HDF5 OUT} —out ${EMBEDDED HDF5 OUT}

if [$? —ne 0]; then

echo "Failed to execute GenSLM.py for Variant ${SLURM_ARRAY TASK ID}."
exit 1

fi

echo "Emebedding for Variant ${SLURM_ARRAY TASK ID} completed successfully!"

Listing 4: Variant Embedding Script - embed_var_aj.sh

62

© 00 N O U ks W N =

e
N o= O

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

8.2 Code — 8.2.2 Embedding Appendices

#!/usr/bin/env python

import argparse

import hbpy

import numpy as np

from genslm import GenSLM, SequenceDataset
from torch.utils.data import DataLoader
import torch

import os

description_text = "Script for embedding mRNA sequences using GenSLM and saving in HDF5 format."
parser = argparse.ArgumentParser(description=description_text)
parser.add_argument('—in', ' hdf5In', type=str, required=True, help='Path to the input HDF5 file

containing mRNA sequences. ')
parser.add_argument('—out','—hdf50ut', type=str, default=None, help='Path to save the embedded sequences
in HDF5 format. If not provided, it will overwrite the input HDF5.')

args = parser.parse_args ()

model = GenSLM("genslm_25M _patric", model cache_dir="/project /mayocancerai/GenSLM") # Initialize GenSLM

model.eval ()

def embed_ with_genslm (seq):

dataset = SequenceDataset ([seq], model.seq_length, model.tokenizer)

dataloader = DataLoader(dataset , batch_size=1)

with torch.no_ grad():

for batch in dataloader:

outputs = model(batch|["input ids"], batch["attention mask"], output_ hidden states=True)
emb = outputs.hidden_states[0].detach ().cpu().numpy()
emb = np.mean(emb, axis=1)

return emb

embedded _sequences = []
with h5py.File (args.hdf5In, 'r') as hdf:

sequences = hdf| 'sequence'][:] # Assuming all sequences are stored in a dataset named 'sequence'
for seq_bytes in sequences:

seq = seq_bytes.decode('utf—8"') # Assuming sequences are stored as bytes

emb = embed_with_genslm (seq)

embedded sequences.append (emb)

embedded _sequences_array = np.vstack (embedded_sequences) # Conwvert list of embeddings to a numpy array (n
z 512)
output_hdf5_ path = args.hdf50ut

with h5py. File (output_hdf5_ path, 'w') as hdf: # Save the embedded sequences array to HDF5

hdf.create dataset('embedded sequences', data=embedded sequences_array)

print (f"Written to {output_hdf5 path}")

Listing 5: Core GenSLM Embedding Script - GenSLM. py

63

Glossary

9 Glossary

e Amino Acids: Organic compounds that combine to form proteins, serving as the building blocks of

life.

e Bash Pipelines: A bash script or series of scripts part of a single execution that passes variables

and/or data between sub-shell environments, often combining multiple coding languages.

e BP (Base Pair): A unit consisting of two nucleotides on opposite complementary DNA or RNA

strands that are connected via hydrogen bonds.

e Codons: Triplets of nucleotides in mRNA that specify which amino acid will be added next during

protein synthesis.

e Gaps: In sequence alignments, spaces inserted to align sequences optimally; gaps can represent dele-

tions or insertions.

¢ Hamming’s Distance: A measure of the number of substitutions required to change one string into

another, used especially in genetics to determine the difference between sequences.

e High Coverage: In genomic sequencing, refers to the number of times a particular region of the

genome has been sequenced, indicating the reliability of the data.

e Learner: In the machine learning context, a learner refers to an algorithm or model that learns from

data to make predictions or decisions.

e MSA (Multiple Sequence Alignment): The alignment of three or more genomic sequences (pro-
tein, DNA, or RNA) to achieve maximal matching, used to identify regions of similarity that may

indicate functional, structural, or evolutionary relationships.

e Mutations: Changes in the nucleotide sequence of the genetic material of an organism, which may

alter the function or activity of gene products.

e NSP (Non-structural Protein): Proteins encoded by a virus that are not part of its structural

components but are crucial for its replication and usually for subverting the host’s immune response.

e Nucleotide: The basic building block of DNA and RNA, consisting of a base attached to a sugar-

phosphate backbone.

64

Glossary

ORFs (Open Reading Frames): Sequences in nucleic acids that potentially encode proteins, starting

with a start codon and ending with a stop codon (also known as a coding region).

Protein: Large biomolecules, or macromolecules, consisting of one or more long chains of amino acid

residues, essential for the structure, function, and regulation of the body’s cells, tissues, and organs.

RNA (Ribonucleic Acid): A nucleic acid present in all living cells. Its principal role is to act as a

messenger carrying instructions from DNA for controlling the synthesis of proteins.

SLURM Jobs Arrays: A feature in SLURM (a job scheduler for Linux) that allows submission of

multiple similar jobs with a single command using an array index.

SP (Structural Protein): Proteins that form the structure of an organism, such as those making up

the cell cytoskeleton or a virus capsid.

Whole Genomes: The complete set of DNA or RNA sequences of an organism, encompassing all its

genes (coding regions) and non-coding regions.

65

	Introduction
	Organization

	Background
	Embeddings and Embedding Algorithms
	Natural Language
	Sequence Representations
	SARS-COV-2
	GenSLM

	Data and Processing
	Data Description
	Data Cleaning & Pre-Processing
	Exploratory Data Analysis
	Generating Embeddings

	Methodology
	Intrinsic Evaluation
	Redundancy
	Singular Value Decomposition (SVD)

	Preservation of Semantic Distance
	Continuous Kullback–Leibler Divergence
	Discrete Kullback–Leibler Divergence
	Distance Matrices

	Separability
	Linear Discriminant Analysis
	Principal Component Analysis
	T-Distributed Stochastic Neighbor Embedding

	Extrinsic Evaluation
	Variant Classification
	Protein Classification
	Classification and Regression Trees

	Results
	Intrinsic Evaluation
	Redundancy
	Singular Value Decomposition

	Relative Preservation of Information
	Distance Matrices
	Kullback–Leibler Divergence

	Separability
	Linear Discriminant Analysis
	Principal Component Analysis
	t-Distributed Stochastic Neighbor Embedding

	Extrinsic evaluation
	Variant Classification
	Protein Classification

	Conclusion
	References
	Appendices
	Figures
	Code
	Pre-Processing
	Embedding

	Glossary

