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Abstract

In this paper, we examine the quality of information preserved in the Genomic Neural Network Em-

bedding algorithm, Genome-scale language model (GenSLM). The research question is: to what degree can

information be retrieved from GenSLM embeddings via intrinsic and extrinsic evaluation? The answer to

this question can provide a benchmark of how easily information can be extracted from GenSLM embed-

dings. Intrinsic and extrinsic assessments are used in this analysis of whole sequence and sub-sequence

Covid DNA. For extrinsic evaluation, supervised learning for classification was performed as a proxy for the

quality of information retrieved. For intrinsic evaluation, unsupervised learning tasks, such as redundancy,

separability, and the relative preservation of the embedding space were performed to assess the quality of the

data reduction. Results offer evidence that GenSLM achieves massive dimension reduction and successfully

encodes genetic information into an embedding that allows for easy data retrieval. GenSLM also requires

fewer resources, technology, or time compared to methods such as One-Hot encoding.
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Introduction

1 Introduction

Neural network embeddings are widely used in machine learning for dimension reduction (Iuchi et al.,

2021). Although the characteristics of neural network embedding algorithms have been extensively explored

in natural language processing, application to genomic data is less studied (Iuchi et al., 2021). Natural

language inherently possesses structured and semantically meaningful elements like nouns and adjectives,

which aid in interpretation, as well as evaluating the quality of embeddings representation. In contrast,

DNA structures are less well-understood, which might explain why advancements in embedding algorithms

initially flourished in natural language processing before adaption to genomics.

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic code that provides the instructions

for building and maintaining life. The structure of DNA can be thought of as rungs on a ladder, which are

known as base pairs, involving the pairing of four nucleotides - Adenine, Thymine, Cytosine, and Guanine.

These nucleotides are commonly referenced as A, T, C and G, respectively, where A bind with T, and G

bind with C. A popular representation of the DNA ladder is given in Figure 1. Genomic sequencing is a

process used to decipher the genetic material found in an organism, which consist of of reading the base

letters that comprise the genome. Different life forms are characterized not only by different orderings of

the four aforementioned nucleotides, but each lifeform sequence is of different lengths. For example, the

SARS-CoV2 virus, which is the source pathogen1 for the Covid pandemic, is approximately 30,0000 base

pairs (bp) in length, whereas the human genome is approximately 3 billion base pairs. Genomes considered

in their entirety are referred to as whole genomes, where a whole genome is made up of the coding and

non-coding region. The coding region specifically encodes proteins that are essential for all the functions

necessary for life. Figure 2 depicts the whole SARS-CoV2 genome marking structural and nonstructural

proteins within the coding region along with the first 43 nucleotides for the nsp1 protein. Figure 3 depicts

how mRNA, which is a translation of DNA where T → U, is translated to amino acids. In this process,

mRNA, which is synthesized from DNA by replacing thymine (T) with uracil (U), serves as the template for

protein synthesis. Amino acids2, which are assembled in a specific sequence dictated by the mRNA, are the

fundamental building blocks of proteins.
1Now the the most studied DNA sequence in the world.
2Its important to note that many embedding algorithms embed amino acids instead of mRNA or DNA.
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Introduction

Figure 1: Base Pairs - Adapted from (National Human Genome Research Institute, 2024)

Figure 2: 2A. Whole Sars-CoV2 Genome with each Coding Region; 2B. Non-Structural Protein 1 (nsp1),
and First 43 Nucleotides adapted from (Kandwal and Fayne, 2023, p. 99)
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Figure 3: Sourced from (ScienceDirect, 2004)

The leap from embedding algorithms for natural language to embedding algorithms tailored to genomic

data was first used with amino acids by Riis and Krogh (1996). Modern neural network embedding algo-

rithms include DNABert, GENSLM, and HyenaDNA (Zhou et al., 2023; Zvyagin et al., 2023; Nguyen et al.,

2024). Despite the use of these modern embedding algorithms, there has been little investigation into the

redundancy, recoverability, and level of granularity associated with these algorithms that can be explained

by the embedding space (Gharavi et al., 2021).

The effectiveness of any machine learning application3 relies on the data representation, the objective

function, and the optimization procedure (Liu and Sun, 2023). As noted by Iuchi et al. (2021), the structure

of how the data is represented is crucial as it impacts the performance of both Natural Language Processing

(NLP) and deep learning applications (Iuchi et al., 2021, p. 3199). Therefore, it is vital for researchers work-

ing with genomic embeddings to understand the potential for information retention based on the embedding

algorithms chosen for specific applications. This understanding is particularly crucial given the ongoing

demand for dimension reduction to ease computational burdens in areas of transformer development4.

This project explores the quality of embeddings through both intrinsic and extrinsic evaluations. Intrin-

sic evaluation focuses on the direct study of information preservation, whereas extrinsic evaluation assesses

the quality of an embedding algorithm based on its performance in downstream tasks, such as regression

and classification, across varying levels of task complexity.

Genomic sequences continuously change through mutations, and much of genomic research focuses on

studying these variations Corso et al. (2021). To quantify the distance between two sequences, biologists
3a Neural network is an example of a machine learning application
4such as transformer attention mechanisms. Where for example, GenSLM tokenizes sequences by codons, leading to a

10, 000× 10, 000 attention block for Covid (30kb) and a 1B × 1B block for human DNA.
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Introduction

use precise statistical models that calculate what is known as the edit distance (e.g., how different is the

sequence, s1 = “AGTA" from the sequence, s2 = “AAGT"). The edit distance represents the smallest number

of weighted insertions, deletions, or substitutions needed to convert one sequence, s1, into another, s2. There

are a variety of edit distance metrics, such as the Hamming, Levenstein, and cosine distance.

It should be noted that edit distances are computationally expensive due to quadratic complexity and

are difficult to parallelize. This makes using genomic sequences in their nucleotide (or amino acid) encodings

a significant bottleneck in large-scale analyses Corso et al. (2021). Instead of comparing whole genome

sequences, it would be more convenient to compare dimensionally reduced sequences, provided that the

dimension maintains a large proportion of the information contained in the whole genome sequence. In

response to this problem, embedding algorithms have exploded onto the scene for reducing the algorithmic

complexity of working with whole genome sequences. By using embedding algorithms, the computation

burden shifts to a preprocessing task and relieves computational complexity and redundancy of downstream

tasks that can allow for more efficient pipelines.

The goal of this study is to provide a performance evaluation of the GenSLM embedding algorithm using

extrinsic and intrinsic evaluation techniques. The extrinsic evaluation focuses on downstream tasks, while

the intrinsic evaluation focuses on understanding the quality of information produced by the embedding

algorithm. The extrinsic evaluation assesses downstream tasks from a range of difficulties. The extrinsic

evaluation techniques are somewhat more straightforward than those techniques used in intrinsic evaluation.

Applying intrinsic evaluation techniques to genetic DNA data poses more challenges compared to the original

use in natural language processing (Lavrač et al., 2021; Liu and Sun, 2023; Iuchi et al., 2021). For context,

the definition of intrinsic evaluation in the NLP literature is the “assessment of whether the similarities of

the input entities (training examples) described in the original representation space are preserved in terms

of the similarities of the transformed representations” (Lavrač et al., 2021, p. 11). Translating this to

a genomics context, the distances between two sequences that are submitted to an embedding algorithm

should have relativity the same distance in their embedded matrix representation. For supervised learning

in the intrinsic case, classification is performed with labels protein and variant using a weak learner, such as

classification and regression trees (CART) . For unsupervised learning in the intrinsic case, separability is

assessed with Linear Discriminate Analysis (LDA), Principal Component Analysis (PCA), and t-Distributed

Stochastic Neighbor Embedding (t-SNE) as well as Redundancy being assessed with PCA and Singular Value

Decomposition (SVD). Notably, this paper marks the first extrinsic evaluation of GenSLM and possibly the

first intrinsic evaluation of an embedding algorithm for genomic sequences.
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1.1 Organization Background

1.1 Organization

This study will first expand upon the background of embedding algorithms for genomic sequences and

their origins in the NLP domain. A brief background of SARS-COV-2 and GenSLM is provided to better

understand the nature of tasks performed later in the study. This is followed by a summary of the data

processing and exploration as a precursor to running the embedding algorithms and methods for intrinsic

and extrinsic evaluation. The resulting findings from the intrinsic and extrinsic evaluation and related

interpretations are then presented and followed by a discussion and conclusions.

2 Background

2.1 Embeddings and Embedding Algorithms

In natural language processing, words in the natural language are commonly represented by numeric

vectors. For example, suppose
→

queen = (0.3, 0.9),
→

king = (0.5, 0.7),
→

woman = (0.3, 0.4) and
→

man = (0.5, 0.2).

Note that
→

king− →
man+

→
woman =

→
queen, the result is (0.5, 0.7)− (0.5, 0.2)+ (0.3, 0.4) = (0.3, 0.9). Similarly,

in genomics, specific nucleotides of DNA - ‘A’, ‘G’, ‘T’, ‘C’ - can be represented by numeric vectors. These

vectors are often referred to as ‘embeddings,’ which is a term originally used in mathematics to describe the

process of mapping from one space to another. However, in both computational biology and language pro-

cessing, the term ‘embeddings’ has now more commonly come to mean the dense vectors produced by specific

algorithms, such as GenSLM, hyenaDNA, or DNABERT2. To improve clarity, it is useful to differentiate

between ‘embedding algorithms’ which refer to the methods generating these vectors, and ‘embeddings’5

themselves, which are the resultant dense vectors also known as ‘Distributed Representations’ or ‘Latent

Spaces’ (Liu and Sun, 2023).

2.2 Natural Language

Genomic sequences resemble natural language in that characters are used to define their meaning, and

that meaning depends on their location relative to other sequences (Iuchi et al., 2021). For instance, the

interpretation of the word “bank" as either a financial entity or a landform beside a body of water hinges on

its surrounding context (Liu and Sun, 2023, p. 47). In an analogous manner, the formation and structure

of a segment of RNA is influenced by the sequences adjacent to it (Iuchi et al., 2021). Therefore, given

the parallels between natural language and genomic sequences, utilizing natural language processing (NLP)
5Although, the term “embeddings" is sometimes more strictly applied only to dense vectors like word2vec, DNABERT2, and

GenSLM, rather than sparse tf-idf or PPMI vectors (Jurafsky and Martin, 2019).
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2.3 Sequence Representations Background

techniques can offer insight into the functional and structural information embodied in genomic sequences

(Iuchi et al., 2021). An important characteristic of embeddings in NLP is that vector distance is also a

measure of semantic similarity, as already demonstrated with
→

king − →
man +

→
woman =

→
queen, see Figure 4.

Vector distance is equally crucial in genomic embedding algorithms and is generally determined using

linear algebra techniques, including the dot product, Euclidean distance, and cosine similarity (Iuchi et al.,

2021). As an illustration, consider a list containing information on organisms as well as food. Then, using

an embedding algorithm, a 2 dimensional (x, y) embedding is obtained, as seen in Figure 5. In this simple

example, it is expected that the vector similarity for Cows would be closer to frogs than Sushi or Pizza, and

similarly, it would be expected that the vector similarity of Sushi would be closer to Pizza than Cows or

Frogs. Likewise, in genomic sequences, the α-amino-3-hydroxy-5-methyl4-isoxazolepropionic acid receptor

and the N-methyl-D-aspartate receptor, which are both ionotropic glutamate receptors, would have a close

vector similarity (Iuchi et al., 2021, p. 3199). Hence, it is hoped that the embeddings and the original

sequences possess similar function and structures so that there should be high vector similarity between

proteins (Iuchi et al., 2021, p. 3199).

Figure 4: Sourced from (Ethayarajh et al., 2018, p. 4)

2.3 Sequence Representations

Liu and Sun (2023)6, provide a framework that underscores the importance of high-quality representa-

tions (embeddings) for perfoming any learning task, see Equation 1.

Knowledge Discovery from Data = Representation7 + Objective + Optimization (1)

Equation 1: Adapted from (Liu and Sun, 2023, p. 1)

Equation 1 describes how to learn from data with using learners, in the general sense that one needs
6A canonical source for Embedding in NLP applications.
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Figure 5: Sourced from (Iuchi et al., 2021, p. 3199)

a way of representing data that a computer can handle (a Representation), a means of evaluating learner

performance (an objective function), as well as mechanism to search different learner configurations for

the best performance (optimisation). More importantly, equation 1, shows that an effective representation,

or embedding, of a genomic sequence is crucial for clustering, classification, regression, protein function

identification, structural analysis, and predicting genetic disorders (Angermueller et al., 2016). For example

in a separate study by Jing et al. (2019), they found differences of up to 27.51% in the classification rate of

Protein Secondary Structure between different embedding algorithms with a Random Forest learner (Jing

et al., 2019, p. 1927). Clearly, the representation method, or embedding algorithm, is critical for successful

and accurate protein classification. For context, the margin between 1st and 20th place in Kaggles Stanford

Ribonanza RNA Folding Competition with $100,000 in prize money is a difference in mean absolute error

(MAE) of only 0.00598 (Kaggle, 2023).

2.4 SARS-COV-2

As already discussed, Coronaviruses are enveloped RNA viruses that possess a positive-sense single-

stranded genome and are part of the Coronaviridae family. They are divided into four main subgroups:

Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus, with SARS-CoV-2 falling

under the Betacoronavirus genus. The single-stranded RNA genome of coronaviruses contains 29,891 nu-

cleotides which translates into 9890 amino acids. The genome of SARS-CoV-2 includes several open reading

11



2.5 GenSLM Background

frames (ORFs) that code for both structural (SP) and non-structural proteins (NSP) which play crucial roles

in the virus life cycle and its pathogenic mechanisms, see Figure 2. Coronaviruses have structural proteins,

such as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins that construct the virus’s

physical structure, and sixteen non-structural proteins (nsp1-16) that are involved in the virus metabolism

and interactions with the immune system of the host. Like many viruses, coronaviruses can mutate during

replication. These mutations may lead to new pathogenic variants that could alter the virus’s transmission,

impact the severity of the disease, and influence the effectiveness of vaccines (Farhud and Mojahed, 2022).

By nature, DNA contains highly redundant information. The sequence similarity across SARS-CoV-2

genomes is generally high, typically greater than 99%, with only a small number of changes that yield distinct

phenotypes (Zvyagin et al., 2023). For example, as few as 22 mutations can identify a variant as unique

from the progenitor of SARS-COV-2, as in the case of Gamma Variant (Farhud and Mojahed, 2022). This is

contextually crucial information as redundancy is a centerpiece for evaluating the quality of the embedding

algorithm and it’s associated output, see Section 4.

2.5 GenSLM

GenSLM is a hierarchical transformer-based model that leverages both Generative Pre-trained Trans-

formers (GPT) for individual gene sequences and stable diffusion techniques. An important concept of

GenSLM, and all embedding algorithms, is the idea of a “tokenizer". In the popular NLP algorithm BERT,

words are treated as ‘tokens’ rather than whole units, and the tokenizer is simply the name for the function

that breaks up words into sub-units. In GenSLM, the input sequence is tokenized into codons, which are

chunks of 3 nucleotides at a time: “AAG", “TAG", etc. The output dimension of the embedding is n×512,

where n represents the number of input sequences. Each element of the 512 elements should roughly corre-

spond to an open reading frame (ORF) where Covid has 20 ORF; see the 20 ORFs for image A) depicting

coding region in Figure 2. Hence, for a Covid sequence with a length of 30,720 base pairs (bp), there are

30, 720/3 = 10, 240 codons (“tokens") from 20 open reading frames, which provides us with 512 elements

(Eq. 2). However, GenSLM elements are not meaningfully interpretable, and the dimensions of GenSLM

vectors are simply the product of the scaling to be specific to the Covid sequences, as shown in Equation 2

below:

Number of GenSLM Elements ≡ Number of Codons for a 30720 bp Covid sequence
Number of Covid ORF’s

≡ 10240

20
= 512

(2)

12



Data and Processing

The core engine of GenSLM includes transformers and diffusion models. These two types of models are

used in tandem to create an understanding of the local (codon level) and global (sequence level) context

needed for genetic analyses. The first step in the GenSLM algorithm is to pass the input sequence to its

transformer encoder that converts the bp character representation into numeric vectors before recursively

running the transformer encoder through a diffusion model to learn a condensed distribution of the whole

sequence. The transformers in GenSLM are used to capture local interactions within a genomic sequence,

whereas the diffusion model integrates information across much larger segments of the genome that can

essentially capture information that could be missed at the transformer level. The integration of transformer

models and diffusion models is hierarchical by using the transformer for finer details and the diffusion model

for broader context. This hierarchical integration allows GenSLM to analyze and predict potential variants

in the genome.

The foundation model for GenSLM used in this paper is the 25 million parameter model from Globus

as specified from the GenSLM Github landing page ramanathanlab/genslm. An important caveat of the

GenSLM-25M model is that it was specifically trained only on the first year of the SARS-CoV-2 data

consisting of ∼ 85,000 SARS-CoV-2 genome sequences, as well as using sequences aligned to the now outdated

reference NC_045512.1 (Zvyagin et al., 2023). Thus, the model did not have the opportunity to see any of

strains beyond March 2021 (Zvyagin et al., 2023).

3 Data and Processing

This section is organized as follows: in Section 3.1 the source for the 581 sequences upon which this report

is based is described. Section 3.2 explains the data cleaning (exclusion criteria) and pre-procesing (multiple

sequence alignment). In Section 3.3 data structure is explored within the realm of whole genome sequences

across multiple SARS-CoV2 variants for the purpose of comparison with their embedding equivalents, as

described in Section 5. In Section 3.4, the workflow of downloading the data, to generating the embeddings

is presented.

3.1 Data Description

All of the Covid sequences used in this paper were taken with permission from the Global Initiative

on Sharing All Influenza Data (GISAID) via the API GISAIDR (Wirth and GISAIDR, 2022). No geo-

graphical or temporal restrictions were placed on the sequences extracted and instead were only filtered

for sequence quality. However, extensive post-processing was performed above and beyond the GISAID’s

exclusion criterion for Covid sequences.
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3.2 Data Cleaning & Pre-Processing Data and Processing

3.2 Data Cleaning & Pre-Processing

In this study, the process of preparing genomic data involved several meticulous steps to ensure the

accuracy and utility of the data for embedding and analysis. To achieve this, automated quality filters

available through the GISAID API were employed. Only sequences marked as “Complete" and having

“High coverage" were included in the dataset. GISAID classifies genomes longer than 29,000 nucleotides

as complete, aligning well with the reference genome for SARS-CoV-2, which is 29,674 base pairs long.

The “High coverage" filter restricts sequences to those with less than 1% undefined bases (denoted as ‘N’),

which indicates a high repetition in the reading of each nucleotide and thereby enhances the accuracy of

the genomic sequence. Conversely, sequences with more than 5% undefined bases are considered to have

low coverage, indicating poorer quality due to insufficient sequencing depth, which could lead to significant

uncertainties in the genomic data. This exclusion criterion was supplemented with additional post-processing

to exclude sequences with ‘N’ ambiguous nucleotides and gap length. The exclusion criteria for Gap length

was executed by removing sequences with gap lengths in proteins twice as large as a mode gap length.

Together, the GISAID’s exclusion criterion and additional post-processing ensured that only high-quality,

reliable DNA sequences were used for subsequent analysis.

Protein level analysis focused on accurately segmenting the SARS-CoV-2 proteins before passing protein

sequences to GenSLM to be embedded. This required a Multiple Sequence Alignment (MSA), for which the

Clustal Omega algorithm was used from the msa package in R (Sievers et al., 2011; Bodenhofer et al., 2015).

To obtain the locations of proteins in terms of base pairs, the Wuhan reference sequence (NC_045512.2),

was included in the alignment for which protein locations are documented (NCBI Reference Sequence, 2023;

Bai et al., 2022, p. 283). By exploiting the known locations of the reference sequences, as well as string

matching unaligned reference sequences to the aligned reference sequence, the updated protein locations

were obtained for later slicing of whole sequence genomes into the respective proteins. Through these careful

preparatory steps involving the GISAID API for data extraction, quality control, and multiple sequence

alignment, precise and meaningful data for subsequent analysis could be obtained.

3.3 Exploratory Data Analysis

The sequences used in all the subsequent analyses had a sequence length around what would be expected

for high coverage Covid sequences (∼ 29000 bp). Moreover, after performing the multiple sequence alignment,

a Radial Dendrogram was constructed by first calculating the identity pairwise distances (IPD). This distance

is a square root dissimilarity measure of the proportion of bases matching between two sequences (Charif and

Lobry, 2024). For example, consider two DNA sequences, Sequence 1: “ATCG", and Sequence 2: “ATCA".

14
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To calculate the identity pairwise distance between these sequences, you first determine how many positions

are identical. Here, the first three nucleotides (ATC) are identical, and the fourth nucleotide differs. So,

three out of four nucleotides are identical, making the proportion of bases matched 0.75. The dissimilarity is

then 1.0− 0.75 = 0.25. The identity pairwise distance between sequences 1 and 2 is obtained as the square

root of the dissimilarity:
√
0.25 = 0.5. This value quantifies the difference based on mismatched nucleotides,

considering gaps if specified. There are no gaps in this simple example. After obtaining the identity pairwise

distances, an agglomerative clustering with complete linkage is performed based on the pairwise distances.

Finally, the Radial Dendrogram in Figure 7 was generated with the R function ape::plot.phylo (Paradis

et al., 2024). This dendrogram, which accounted for gaps, illustrates moderately good clustering of Covid

variants, albeit with the somewhat strange placement of the Wuhan reference genome relative to the scientific

census for very large samples of the Covid sequence (Nextstrain, 2022). This feature is likely not a failure

on the part of agglomerate clustering algorithm but the sample of sequences used.
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Figure 6: Sequence length across 581 subjects (Line Marks Sequence Length Post-Alignment)
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Figure 7: Radial Dendrogram for 581 Aligned Whole Genome Covid Sequences with Wuhan-Hu-1 Reference
- See Figure 12 for Comparison -
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3.3 Exploratory Data Analysis Data and Processing

The placement of the Wuhan sequence for the dendrogram in Figure 7 is merely a product of the

structure of the data, as shown in Table 1 and Figure 8. This suggests the sample of 581 Covid sequences

used may not be reflective of the Covid variants overall.

Table 1: Mean Gap Sizes, Mutations, and Total Changes for COVID-19 Variants Aligned to Reference.

Variant Mean Gap Size Mean Mutation Count Total Changes

Alpha 324 294.66 618.66

Beta 170 146.35 316.35

Delta 203 167.31 370.31

Epsilon 191 166.35 357.35

Gamma 178 136.69 314.69

Mu 219 163.12 382.12

Omicron 185 62.26 247.26

Note: Mutation counts are based on Hamming’s Distance calculations.

Figure 8: Whole Genome Mutation Count (Hamming Distances) from Wuhan Reference
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In addition, the Hamming distance was calculated per protein sequence from the aligned Wuhan reference

sequence, which indicates the number of mutations from the progenitor virus, as seen in Figure 9. It can

also be noted from Figure 9, that the Spike protein (S) and M have the most mutations, colored in red to

purple, while most other proteins, colored in mostly yellow, have very few mutations.

Figure 9: Hamming Distance of Aligned Proteins to Wuhan Reference Sequence

3.4 Generating Embeddings

For embedding the Covid DNA sequences variant by variant as well as protein by protein, a combination

of bash pipelines were created and executed with SLURM Jobs Arrays on a high-performance computing

(HPC) Linux environment, see Figure 25 in the appendix. For the interested reader, one can inspect the

code used for executing the embedding in Scripts 1, and 2 for pre-processing, and Scripts 3, 4 and 5 in

the appendix. These pipelines required computing resources greater than what is typically available for

a standard-issue laptop. Initially, even in an HPC environment, computing jobs could take over twelve

hours to complete and occasionally exceed 20 GB in memory utilization. By editing scrips to run as job

arrays, computational times were expedited and often completed within six hours of execution. Note that

the environment file for recreating the conda environment used for embedding can be found in the following
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file environment.yml.

Passing sequences through the embedding pipeline, specifically at step 3, is part of a broader workflow

depicted in Figure 10, which typically spans a week to complete. The workflow begins with downloading

sequences using the GISAID API8, spanning a half-day process for Step 1. Step 2 involves multiple sequence

alignment, which could take up to a week, followed by step 3, which would take about six hours for embedding.

The final step before evaluation, Step 4, aggregates the results in less than an hour. This extensive process

generates numerous files: the original GISAID data in a .feather9 file, a .rds file from the alignment,

another .feather file after post-processing alignments, several .h510 sequence and embedding files, and a

.feather file for the aggregated embeddings across all variants and proteins. Note that all of the code for

producing the results in this paper can be found at the Github repository DHintz137/GenSLM_Embedding.

Figure 10: General Workflow

8 Most of this time was due to the sleep times introduced to account for API rate limiting so as to avoid temporally losing
access to the API.

9 A .feather file is a binary columnar data storage format designed to efficiently store and access data frames.
10.h5 files are a highly efficient hierarchical data format associated with HDF5 (Hierarchical Data Format version 5) and are

commonly used in bioinformatics.
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Methodology

4 Methodology

This study aimed to assess the quality of the GenSLM embedding algorithms when applied to genomic

analyses. The quality of an embedding is assessed based upon its information richness and the degree of

non-redundancy. Information richness is greater when there is higher learner performance for downstream

tasks. Non-redundancy is gauged by how much the information can still be compressed without being

dimensionally redundant (Jing et al., 2019). When downstream learning tasks are evaluated, it’s often

referred to as extrinsic evaluation. While when the qualities of the embedding matrix itself are assessed it is

often referred to as intrinsic evaluation (Lavrač et al., 2021).

There are various methods for conducting intrinsic and extrinsic evaluations of embeddings. The sub-

sections below detail these methods. The intrinsic evaluation (Section 4.1) focuses on three attributes:

redundancy, separability, and the preservation of semantic distance. Section 4.1.1 examines redundancy

using Singular Value Decomposition (SVD), and also explores redundancy through a classification task on

dimensionally reduced data (Section 5.2.2). The preservation of semantic distance is assessed in Section

4.1.2 using Kullback–Leibler Divergence. Separability is investigated in Section 4.1.3 through LDA, PCA,

and t-SNE techniques. For extrinsic evaluation (Section 4.2), CART is employed to classify variants and

proteins.

4.1 Intrinsic Evaluation

For intrinsic evaluation, three methods were used, each providing unique insight. Studying an embed-

ding’s redundancy reveals the efficiency of its encoding; more efficient encodings tend to perform better and

use fewer computational resources. Separability gives practical insight into whether or not the embedding

output can be separated into meaningful genomic groups (i.e., variants). Meanwhile, exploring the preserva-

tion of semantic distance is important for determining if the structural representation of information remains

valid for subsequent tasks.

Intrinsic analysis of embeddings presents several challenges primarily related to measuring semantic

distance and validating the interpretations drawn from these measurements. For instance, distances in latent

spaces, which are the vector spaces formed by dimension-reducing embedding algorithms, lack physical units,

leading to complicated interpretation. Additionally, latent spaces are influenced by the architectural details

of the specific neural networks (i.e., GenSLM) used to produce them (Arvanitidis et al., 2017). Moreover,

the distance calculations used to determine differences between latent spaces are more complex in neural

networks because the latent space is non-linear (Arvanitidis et al., 2017). This fact brings difficulties in
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4.1 Intrinsic Evaluation – 4.1.1 Redundancy Methodology

selecting a distance metric that maps between both a linear and non-linear space. The investigation of the

semantic distance from the original representation to the embedding space may fail as a result of the metric

and not the embedding algorithm chosen11. The following sections will provide a detailed methodology for

each of these intrinsic evaluation methods.

4.1.1 Redundancy

In this paper, redundancy will be explored through two methodologies: Singular Value Decomposition

(SVD) and Principal Component Analysis (PCA). Detailed descriptions and results of SVD are presented

in Sections 4.1.1.1 and 5.1.1.1, respectively. Similarly, PCA is discussed in Sections 4.1.3.2 and illustrated

in Figure 23.

4.1.1.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a technique used to analyze redundancy by measuring the

cumulative proportion explained (CPE), where CPE is a measure of how much variance in the original data

captured by the singular values, Σ̂i. Moreover, SVD decomposes any complex-valued matrix X of dimensions

n×m into a product of three matrices, as shown below (Peters, 2019):

X = UΣV∗ (3)

Here, U and V are unitary matrices from the sets Cn×n and Cm×m respectively, each having orthonormal

columns. The matrix Σ, which lies in Rn×m, contains real, non-negative diagonal entries and zeros elsewhere.

In this context, the asterisk notation (∗) represents the Complex Conjugate Transpose, otherwise known as

the Hermitian Transpose12.

For cases where n ≥ m, the diagonal of Σ holds at most m non-zero elements, and can be expressed as:

Σ =

 Σ̂

0

 (4)

Consequently, X can be precisely reconstructed using the economy SVD13

11These challenges can often easily be overcome in NLP as the embedding map to a vector for each word or sub-word unit.
12 The Hermitian Transpose can be computed in R using t(Conj(X)).
13Note: Û⊥ is the orthogonal complement of the subspace spanned by Û, i.e., it is the set of all vectors in the encompassing

space (that includes Û and more) that are orthogonal to every vector in Û.
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X = UΣV∗ =

[
Û Û⊥

] Σ̂

0

V∗ = ÛΣ̂V∗ (5)

This reduced form still completely captures the matrix X while utilizing a simplified structure (Pe-

ters, 2019). This simplified structure is used in calculating the cumulative proportion explained, which is

calculated by the cumulative sum of the singular values squared, cumsum(diag(Σ̂2
i )).

4.1.2 Preservation of Semantic Distance

Embedding algorithms, as data transformation tools, modify the coordinate system of the output space.

Although neural network embedding algorithms do not constitute invariant transformations, they are ex-

pected to preserve the semantic distances inherent in the data (Lavrač et al., 2021). For instance, it is

anticipated that the cosine distance between sequences from the same variant would be smaller compared to

distances between different variants. This expectation mirrors the Word Analogy task in natural language

processing, as discussed by (Lavrač et al., 2021). For measuring sequence similarity in their DNA charac-

ter encodings, the Discrete Kullback–Leibler (DKL) divergence is appropriate, considering that counts of

nucleotide bases (“A", “G", “T" and “C") are discrete. Conversely, for embeddings, the Continuous Kull-

back–Leibler (CKL) divergence can be employed since embeddings exist within a continuous vector space.

This paper employs both Discrete Kullback-Leibler (DKL) and Continuous Kullback-Leibler (CKL) diver-

gence to determine if the distortions from the GenSLM transformation are minimal enough to deem the

embeddings reliable for bioinformatics pipelines

4.1.2.1 Continuous Kullback–Leibler Divergence

The Continuous Kullback–Leibler divergence (CKL), also known as Continuous Relative Entropy or

I-divergence, is a non-symmetric measure14 of divergence between two probability distribution functions

(PDF). Where statistical divergence is defined as the “degree of separation of two points f and g, but it or

its square root is not a distance" (Amari, 2016, p. 10). This is because it does not necessarily satisfy the

symmetry condition, so that in general:

DKL(f∥g) ̸= DKL(g∥f). (6)

14 In the sense that it is not technically a distance or metric, as it doesn’t satisfy the triangular inequality.
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However, a convenience of CKL is that it acts in accordance with the geometric properties of PDF’s as

the same role as squared Euclidean distance (Csiszar, 1975). Hence, the relative entropy D(f∥g)15 of two

PDFs, f and g, is defined as:

DKL(f∥g) =
∫
S

f(x) log
f(x)

g(x)
dx (7)

where S is the support set of f16. It should be noted that the Continuous KL Divergence was approximated

using a normal distribution, based on the mean and standard deviation of the embedding vectors. This

approach facilitated the integration of CKL values, where the assumption of normality is reasonably satisfied,

as illustrated in Figure 24.

4.1.2.2 Discrete Kullback–Leibler Divergence

Meanwhile, the Discrete Kullback–Leibler (DKL) divergence is defined as the following:

DKL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)
(8)

where Pi represents the frequency of the ith nucleotide in a specific genome X, and Qi denotes the average

frequency of this nucleotide determined from all complete genomes (Akhter et al., 2017). In the discrete

case, KL divergence is the statistical divergence between two DNA sequences treated as discrete PDF’s.

4.1.2.3 Distance Matrices

Distance matrices offer another method for evaluating the preservation of semantic distance. However,

before constructing a distance matrix, an appropriate distance metric must be chosen. For DNA sequences,

the identity pairwise distance is suitable due to its simplicity and interpretability. There are also efficient

open-source tools available for this calculation, such as the R function seqinr::dist.alignment, which was

previously explained in the Section 3.3. For the embeddings, Euclidean distance is selected for its speed

and simplicity despite the potential issue that the latent space may not be Euclidean. This calculation is

performed using the stats::dist function in R.
15 where ∥ denotes f is relative to g.
16 Note that D(f∥g) = 0 if supp(g) /∈ supp(f).

23



4.1 Intrinsic Evaluation – 4.1.3 Separability Methodology

4.1.3 Separability

In the context of bioinformatics, the separability of embedding outputs into meaningful genomic groups,

such as variants, is crucial for effective analysis and interpretation. The ability to distinguish these groups

within the embedding space indicates that the transformation algorithms have maintained critical biological

distinctions. This aspect of data analysis ensures that subsequent analyses, such as clustering or classification,

are grounded in biologically relevant differences rather than artifacts of the data transformation process. In

this section, we explore various statistical and machine learning methods to evaluate the separability of

genomic groups in the embedding space to provide a check for robust downstream analyses.

4.1.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a statistical technique used for classification and discrimination

of observations into predefined groups based on multivariate data. The primary goal of LDA is to find rules

that best separate known groups, which are denoted as G1, G2, . . . , Gg, and optimally allocate observations

to these groups. This involves two main components: Discriminant Analysis (DA), which develops rules

that effectively distinguish between different groups, and Classification Analysis (CA), which assigns new

observations to one of the predefined groups based on these rules (Everitt and Dunn, 2001a).

The decision to assign an observation yi to a group k is based on either minimizing the distance between

the observation and the group centroid or maximizing the likelihood that the observation belongs to group

k. Assuming that the data for each group follows a multivariate normal distribution, the probability density

function (PDF) for an observation yi belonging to group k is given by:

fk(yi) = (2π)−
p
2 |Σk|−

1
2 exp

[
−1

2
(yi − µk)

TΣ−1
k (yi − µk)

]
(9)

If equal covariance matrices are assumed across groups (Σ1 = · · · = Σg = Σ), then the equation

simplifies, and Σk is replaced with a pooled estimate Σ̂ = Sp. The probability of group k given observation

yi (posterior probability) is calculated using Bayes’ rule:

P (Gk | yi) =
f̂k(yi)P (Gk)∑g
h=1 f̂h(yi)P (Gh)

(10)

where P (Gk) is the prior probability of group k. The observation is then assigned to the group that maximizes

this posterior probability. Under the assumptions of multivariate normality, equal covariance matrices, and

equal priors, the optimal allocation rule becomes Fisher’s Linear Discriminant Function (LDF) (Everitt and

Dunn, 2001a). Fisher’s LDF seeks a linear combination of variables that maximizes the ratio of the between-
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group variance to the within-group variance, thereby maximizing the separation between groups. This is

achieved by finding coefficients a(j) that satisfy:

E−1Ha(j) = λ(j)a(j) (11)

where E is the within-group sum of squares and cross-product matrix, and H is the between-group

equivalent (Everitt and Dunn, 2001a). LDA is being utilized in this paper for its utility in forcing a separation

of groups, as illustrated by Figure 14.

4.1.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a dimension reduction technique used to simplify a dataset

with many variables into fewer principal components that still capture the essential variability in the data

(Everitt and Dunn, 2001b). These components are linear combinations of the original variables formulated to

maximize the captured variance sequentially to ensure that each component is uncorrelated with the others.

Mathematically, this involves solving for components that maximize the variance under orthogonality and

normalization constraints, represented in the eigen value decomposition of the covariance or correlation

matrix: a′(j)Sa(j) subject to a′(j)a(j) = 1 and a′(j)a(m) = 0, see equation 13 (Everitt and Dunn, 2001b).

Each principal component score ci(j) is then calculated as ci(j) = a′i(j)zi, where zi is the standardized data

vector. This process is sensitive to the scaling of the original data which makes the choice between using the

covariance matrix S (see equation 14) and the correlation matrix R crucial. Applying PCA to a covariance

matrix focuses on maximizing variance among highly correlated variables whereas PCA for a correlation

matrix standardizes the scale of variables to treat them equally. As already indicated, this choice can

have large ramifications for the analysis, especially when original variable scales differ significantly. In the

mathematical formulation, each component maximizes a specific variance function under constraints that

ensure orthogonality and unit scaling.

Linear Combination l(j) = a′(j)y = a(j)1y1 + a(j)2y2 + . . .+ a(j)pyp (12)

a(j) maximizes a′(j)Sa(j) subject to

 a′(j)a(j) = 1 (scaled)

a′(j)a(m) = 0 (orthogonal)
(13)
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S = AΛA′ =
[
a(1)a(2) · · · a(p)

]


λ1 0 · · · 0

0 λ2 · · · 0

...
... · · ·

...

0 0 · · · λp





a′(1)

a′(2)
...

a′(p)


(14)

PCA is used to derive scores, or principal components, that can effectively summarize the data. Plot-

ting these components can be used to visually assess if the grouping variable, such as a specific genomic

classification, distinctly separates. This visualization helps determine if the embedding matrix possesses the

quality of separability to indicate how well it maintains meaningful distinctions within the data.

4.1.3.3 T-Distributed Stochastic Neighbor Embedding

The visualization tool, t-Distributed Stochastic Neighbor Embedding (t-SNE) is a statistical method for

visualizing high-dimensional data by reducing its dimensions to facilitate the exploration of data structure

(Van der Maaten and Hinton, 2008). Initially, t-SNE constructs a probability distribution in the high-

dimensional space such that similar data points are assigned higher probabilities while dissimilar points are

assigned lower probabilities. The similarity of data point xj to xi is modeled as a conditional probability pj|i,

which is computed using a Gaussian distribution centered at xi (Van der Maaten and Hinton, 2008). These

probabilities are symmetrized to form a joint probability distribution pij in the high-dimensional space.

In the low-dimensional space, t-SNE defines a similar probability distribution using a Student t-

distribution, denoted as qij . The choice of the t-distribution is characterized by heavier tails than a Gaussian

distribution which helps in effectively modeling the joint probabilities of dissimilar data points which allows

them to be positioned further apart on the map.

The main objective of t-SNE is to minimize the Kullback-Leibler divergence between the two probability

distributions pij and qij over all pairs of data points (Van der Maaten and Hinton, 2008). This minimization

is typically achieved through gradient descent techniques. The Kullback-Leibler divergence acts as a cost

function that measures the fidelity with which distances in the high-dimensional space are preserved in the

low-dimensional embedding.

The effectiveness of t-SNE lies in its ability to capture the local structure of the data while revealing

clusters and patterns that are difficult to discern in high-dimensional spaces. However, the method is sensitive

to the choice of parameters like perplexity and learning rate, and its computational cost can be substantial

for large datasets. Results are seen in Figures 18 and 19.

26



4.2 Extrinsic Evaluation Methodology

4.2 Extrinsic Evaluation

For extrinsic evaluation the potential range of benchmark tasks is vast. This necessitates the selection of

a meaningful subset that categorizes tasks by difficulty. This subset includes tasks such as classifying proteins

(see Section 4.2.2) and classifying variants (see Section 4.2.1). These classification tasks serve as practical

benchmarks to assess the performance of GenSLM embeddings across varying levels of task complexity. The

variations in task difficulty are discussed in Sections 4.2.1 and 4.2.1, with additional details on the chosen

learning method provided in Section 4.2.3.

4.2.1 Variant Classification

Variant Classification is deemed a harder task given the high sequence similarity across SARS-CoV-2

genomes (Zvyagin et al., 2023) and the longer sequence length. Because variant classification is the whole

genome, the amount of data given to the learner is the same as the number of sequences, while for protein

classification, the number of rows of the dataset is the number of proteins times the number of patients,

making the task of classifying variants more data constrained than classifying proteins. For performing the

classification, a classification and regression tree (CART) learner is utilized with no tuning for classifying

the variants Alpha, Beta, Gamma, Delta, Epsilon, Omicron, and Mu in Section 5.2.1. This method achieved

notable accuracy, as shown in Section 5.2.1.

In addition classification on variants was also performed with the a One-Hot-encoding representation of

the aligned 581 DNA sequences. This serves as one comparison for classification performance for alternative

representations of DNA.

4.2.2 Protein Classification

Because Proteins have large differences in sequence lengths and functions, classifying proteins should be

an easier task than classifying Covid variants. Moreover, we would expect with a shorter sequence (i.e., less

dimension reduction), the hierarchical diffusion model would have fewer local interactions to stitch together.

By extension, GenSLM would produce a higher quality embedding and a higher classification performance

than variants. Classification was performed by CART using protein labels and 582 embedding vectors as the

feature matrix. Classification was also performed on a 28 PCA dimensionally reduced transformation of the

GenSLM embedding matrix. This task is a hybrid of both extrinsic and intrinsic evaluation as it indicates

whether further dimension reduction can be performed on the embedding without losing any predictive

performance.
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4.2.3 Classification and Regression Trees

Classification and Regression Tree (CART) was the chosen learner for performing extrinsic evaluation

based on its simplicity and popularity for supervised learning tasks in the machine learning community. It was

important that a simple and interpretable learner was chosen as information retrieval from the embedding

space should be minimally intensive in order for the embedding algorithm to add value to bioinformatic

workflows. Hence, all training was done with 20/80 test-train splits with no tuning of hyperparameters.

The Classification and Regression Tree (CART) is a type of predictive model that can produce intuitive,

interpretable models resembling a flowchart-like structure. This technique involves segmenting the predictor

space into distinct and non-overlapping regions for which simple predictions are made (Breiman, 2017).

Given the dependent variable for this study is categorical, the prediction is often the mode of the category.

The primary appeal of CART lies in the simplicity of its results producing a sequence of "if-then" decision

rules that are straightforward to understand and implement.

The process of building a decision tree using CART methodology involves repeatedly splitting the data

into further subsets based on feature values (Breiman, 2017). This splitting process, called binary recursive

partitioning, starts at the root of the tree and branches down to the leaves. At each node, the tree algorithm

selects the best split based on a specific criterion that aims to maximize the homogeneity of the resultant

subgroups. Optimality criteria such as the Gini index for classification tasks or variance reduction for

regression guide these splits. However, allowing the tree to grow unrestrictedly until each leaf is pure leads

to models that are highly complex and overfit to the training data.

To mitigate overfitting, CART incorporates a strategy known as pruning, which involves trimming

down the tree after it has been grown. Pruning reduces the size of the tree by removing sections that

provide little power in predicting the target variable, and simplifies the model and potentially improving

its generalizability to new data. By balancing model complexity and fit, pruning helps maintain a robust

model that performs well not only on the training dataset but also on external validation sets. The Python

function DecisionTreeClassifier was used from the sklearn.tree module for performing all classifications

produced in Figures 20 , 21, 22, and 23.

5 Results

Our analysis heavily utilizes data visualizations (unsupervised learning) to communicate the results of

our intrinsic and extrinsic evaluations. The results of this study are detailed in the following subsection and

demonstrate the utility of GenSLM in bioinformatic workflows.
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5.1 Intrinsic Evaluation

5.1.1 Redundancy

5.1.1.1 Singular Value Decomposition

Using a SVD, as seen in Figure 33, the embedding matrix is still highly redundant with only seven

components explaining 99.68% of the variance. The high cumulative proportion explained indicates the

chosen output dimensions of 512 elements in the GenSLM algorithm could possibly have been revised to

have fewer dimensions without sacrificing information. For example, in the paper by Jing et al. (2019), 16

embedding algorithms were tested, and only two algorithms had 20 dimensions or higher (Jing et al., 2019).

5.1.2 Relative Preservation of Information

5.1.2.1 Distance Matrices

Appearing in the order A) top left, B) top right, C) bottom left, D) bottom right, as shown in Figure

11, are A) the sequence distance matrix, B) the embedding distance matrix, C) the absolute difference of

the sequence and the embedding matrix, and D) the regular difference of the sequence and the embedding

matrix. First, focusing on the sequence distance matrix (plot A), it should be noted that there are seven

faint outlines of blue squares running down the diagonal. Moving from left to right, these squares correspond

to variants in the following order: Alpha, Beta, Delta, Epsilon, Gamma, Mu, and Omicron. Hence, these

squares act like variant column names for all of the distance matrices in Figure 11. Thus, the blue squares

indicate what we would expect that all sequences are most closely related to other sequences of the same

variant. Moreover, in Plot A, Alpha variants have larger within-variant variation as indicated by the L-

shaped red striations. What can also be noticed is that there is a lot of heterogeneity between sequences

that is represented by a large variation of color from blue to red.

Comparing the Sequence Distance Matrix Plot (Plot A) and the Embedding Distance Matrix Plot (Plot

B), the blue squares in Plot B are more visible indicating that there are smaller distances between sequences

of the same variant than Plot A. The high visibility of the diagonal in plot B indicates that the embedding

clearly distinguishes sequences of different variants, and presumably, that classifying variants would be easier

with the embedded representation. However, the off-diagonals for plot B indicate that sequence-to-sequence

distances of the embeddings are far more homogeneous than the pairwise distances of the DNA sequences in

plot A. This finding is shared by the lower left and right plots which show how very fine information for the

pairwise distances of sequences has been lost in the embedding matrix produced by GenSLM.
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Meanwhile, looking at the radial Dendrogram of the embeddings produced in Figure 12, all variants now

cluster perfectly, whereas in the Exploratory Data Analysis, the radial Dendrogram of the raw sequences in

Figure 7 did not cluster perfectly. This confirms the results from the distance matrices, which show that

that the embedding helps force the separation of variants. However, it can shown that some information was

distorted in the embedding process as indicated by the differing locations of the Wuhan reference between

Figure 7 and Figure 12. The shift in the location of the Wuhan sequence indicates that the genetic distance

from the original sequence data was not preserved in the transformation process of the GenSLM Embedding.

5.1.2.2 Kullback–Leibler Divergence

Both the discrete and continuous KL Divergence in the left and middle panels of Figure 13 measure

the divergence of individual sequences from the reference. In the Discrete case shown in the left panel, the

positioning of variants roughly matches the results from the raw sequences in the Exploratory Data Analysis

Section. For example, in Figure 13, the Alpha variant (in red) has the largest divergence from the Wuhan

reference sequence compared to any other variant. This relationship is also seen in Figure 8.

Comparing the discrete and continuous KL Divergences in Figure 13, the Discrete KL Divergence (left

panel) does not show very good clustering of variants, while the continuous KL Divergence (middle panel)

shows a very clear separation of variants. However, variants Delta and Mu have a considerably higher

divergence from the reference in the continuous case (middle panel) than they do in the discrete case (left

panel). There is clearly a distortion in the divergence of Delta and Mu in the discrete case versus the

continuous. This distortion is also seen in the rearrangement of variants in the radial dendrograms from

Figure 7 to Figure 12. Such distortion of information is concerning as it could lead practitioners using the

embeddings to overestimate the genetic distance of the Delta and Mu variants from the reference strain, which

results in serious complications for subsequent analyses. Finally, in the third panel, a linear relationship does

not emerge when plotting the discrete versus continuous KL divergence. This means there is a fundamental

change in the representation of data before and after the GenSLM embedding.
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Figure 11: Pairwise Sequence Distance Matrices Versus Euclidean Distance Embedding Matrices Across
Seven Variants
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5.1 Intrinsic Evaluation – 5.1.2 Relative Preservation of Information Results

Figure 12: Radial Dendrogram for 581 Aligned Covid Sequence Embeddings with Wuhan-Hu-1 Reference
- See Figure 7 for Comparison -
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5.1 Intrinsic Evaluation – 5.1.3 Separability Results

Figure 13: Discrete (DNA Sequences) Versus Continuous (Numeric Embeddings) KL Divergence Relative
to the Wuhan Reference Sequence

5.1.3 Separability

5.1.3.1 Linear Discriminant Analysis

For the LDA of proteins, as shown in Figure 14, the model perfectly separates all proteins. The zoomed-

in plot in Figure 14 shows that each dot in the zoomed-out plot is a cluster of proteins from the sequence

embeddings. This indicates that there is good separability of data from the GenSLM algorithm. On the

other hand, GenSLM does not have good separability when applied to variants. For example, LDA was not

able to separate variants Delta and Epsilon. For the LDA of proteins and variants, separability is harder to

achieve for highly similar sequences such as variants.
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Figure 14: Protein LDA Plot
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Figure 15: Variant LDA Plot

5.1.3.2 Principal Component Analysis

Moving on to PCA, Figure 16 and 17 shows both variants and proteins are perfectly separable. This

indicates good separability from the GenSLM algorithm for both variants and proteins.
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Figure 16: Variant PCA Plot
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Figure 17: Protein PCA Plot

5.1.3.3 t-Distributed Stochastic Neighbor Embedding

The t-SNE analysis was a third method for examining the separability of the GenSLM embeddings.

Similar to the PCA analysis, the t-SNE shows perfect separability of both variants and proteins.
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Figure 18: t-SNE Clustering of Variants from Embedded Sequences
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5.2 Extrinsic evaluation Results

Figure 19: t-SNE Clustering of Proteins from Embedded Sequences

5.2 Extrinsic evaluation

5.2.1 Variant Classification

The CART model fit for classifying variants produces the tree as seen in Figure 20. Notably, the

classification rate is near perfect, with a classification rate of 97.71% and four misclassified variants, see

Table 2. Overall, the classification rate of 97.71% reflects well on the GenSLM algorithm given that a simple

learner (CART) can classify nearly 100% of variants using the embedded GenSLM data. The CART model

classified the embedding data with ten leaves. In contrast, another CART model, using One-Hot-encoded

whole genome sequence data produced a tree with 341 leaves with only a 10.28% classification rate, see

Figure 21. The deep tree shown in Figure 21 is the result of the known flaw of using decision tree-based

learners on One-Hot-Encoded data. However, the magnitude of the difference in classification from 97.71% to
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5.2 Extrinsic evaluation – 5.2.1 Variant Classification Results

10.28% gives context to the size of performance difference that can be observed between different encodings

of genomic data. The difference between classification performance further highlights the value of GenSLM

and the embedding algorithms in general.

E276 <= -0.005
gini = 0.856

samples = 406
value = [53, 53, 58, 61, 64, 61, 56]

class = gamma

E159 <= -0.001
gini = 0.059
samples = 66

value = [0, 0, 0, 2, 64, 0, 0]
class = gamma

True

E469 <= -0.004
gini = 0.833

samples = 340
value = [53, 53, 58, 59, 0, 61, 56]

class = mu

False

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E35 <= -0.001
gini = 0.03

samples = 65
value = [0, 0, 0, 1, 64, 0, 0]

class = gamma

gini = 0.0
samples = 64

value = [0, 0, 0, 0, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

gini = 0.0
samples = 61

value = [0, 0, 0, 0, 0, 61, 0]
class = mu

E37 <= -0.001
gini = 0.8

samples = 279
value = [53, 53, 58, 59, 0, 0, 56]

class = epsilon

E493 <= -0.002
gini = 0.033
samples = 60

value = [0, 0, 1, 59, 0, 0, 0]
class = epsilon

E12 <= -0.001
gini = 0.75

samples = 219
value = [53, 53, 57, 0, 0, 0, 56]

class = delta

gini = 0.0
samples = 59

value = [0, 0, 0, 59, 0, 0, 0]
class = epsilon

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

gini = 0.0
samples = 57

value = [0, 0, 57, 0, 0, 0, 0]
class = delta

E170 <= 0.003
gini = 0.666

samples = 162
value = [53, 53, 0, 0, 0, 0, 56]

class = omicron

E262 <= -0.004
gini = 0.5

samples = 106
value = [53, 53, 0, 0, 0, 0, 0]

class = alpha

gini = 0.0
samples = 56

value = [0, 0, 0, 0, 0, 0, 56]
class = omicron

gini = 0.0
samples = 53

value = [0, 53, 0, 0, 0, 0, 0]
class = beta

gini = 0.0
samples = 53

value = [53, 0, 0, 0, 0, 0, 0]
class = alpha

Figure 20: CART Variant Classification (97.71%) on Aligned Sequence Embeddings

Table 2: Misclassified Variants

Sequence ID Actual Predicted
244 delta epsilon
268 epsilon delta
335 gamma epsilon
408 gamma epsilon
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E88 <= 0.5
gini = 0.856

samples = 406
value = [53, 53, 58, 61, 64, 61, 56]

class = gamma

E194 <= 0.5
gini = 0.856

samples = 404
value = [51, 53, 58, 61, 64, 61, 56]

class = gamma

True

gini = 0.0
samples = 2

value = [2, 0, 0, 0, 0, 0, 0]
class = alpha

False

E207 <= 0.5
gini = 0.856

samples = 402
value = [51, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 2

value = [0, 0, 0, 0, 0, 2, 0]
class = mu

E128 <= 0.5
gini = 0.856

samples = 401
value = [50, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E24 <= 0.5
gini = 0.856

samples = 400
value = [49, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E14 <= 0.5
gini = 0.856

samples = 399
value = [48, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E1 <= 0.5
gini = 0.856

samples = 398
value = [47, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E22 <= 0.5
gini = 0.856

samples = 397
value = [46, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E86 <= 0.5
gini = 0.856

samples = 396
value = [45, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E62 <= 0.5
gini = 0.856

samples = 395
value = [44, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E438 <= 0.5
gini = 0.855

samples = 394
value = [43, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E206 <= 0.5
gini = 0.855

samples = 393
value = [42, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E90 <= 0.5
gini = 0.855

samples = 392
value = [41, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E97 <= 0.5
gini = 0.855

samples = 391
value = [40, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E208 <= 0.5
gini = 0.855

samples = 390
value = [39, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E99 <= 0.5
gini = 0.854

samples = 389
value = [38, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E91 <= 0.5
gini = 0.854

samples = 388
value = [37, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E29 <= 0.5
gini = 0.854

samples = 387
value = [36, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E3 <= 0.5
gini = 0.853

samples = 386
value = [35, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E15 <= 0.5
gini = 0.853

samples = 385
value = [34, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E31 <= 0.5
gini = 0.853

samples = 384
value = [33, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E545 <= 0.5
gini = 0.853

samples = 383
value = [32, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E79 <= 0.5
gini = 0.852

samples = 382
value = [31, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E440 <= 0.5
gini = 0.852

samples = 381
value = [30, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E23 <= 0.5
gini = 0.851

samples = 380
value = [29, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E74 <= 0.5
gini = 0.851

samples = 379
value = [28, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E441 <= 0.5
gini = 0.851

samples = 378
value = [27, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E30 <= 0.5
gini = 0.85

samples = 377
value = [26, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E95 <= 0.5
gini = 0.85

samples = 376
value = [25, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E203 <= 0.5
gini = 0.849

samples = 375
value = [24, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E146 <= 0.5
gini = 0.849

samples = 374
value = [23, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E61 <= 0.5
gini = 0.848

samples = 373
value = [22, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E47 <= 0.5
gini = 0.848

samples = 372
value = [21, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E63 <= 0.5
gini = 0.847

samples = 371
value = [20, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E48 <= 0.5
gini = 0.847

samples = 370
value = [19, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E67 <= 0.5
gini = 0.846

samples = 369
value = [18, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E127 <= 0.5
gini = 0.846

samples = 368
value = [17, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E439 <= 0.5
gini = 0.845

samples = 367
value = [16, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E26 <= 0.5
gini = 0.844

samples = 366
value = [15, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E78 <= 0.5
gini = 0.844

samples = 365
value = [14, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E83 <= 0.5
gini = 0.843

samples = 364
value = [13, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E98 <= 0.5
gini = 0.843

samples = 363
value = [12, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E93 <= 0.5
gini = 0.842

samples = 362
value = [11, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E39 <= 0.5
gini = 0.841

samples = 361
value = [10, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E77 <= 0.5
gini = 0.84

samples = 360
value = [9, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E49 <= 0.5
gini = 0.84

samples = 359
value = [8, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E25 <= 0.5
gini = 0.839

samples = 358
value = [7, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E149 <= 0.5
gini = 0.838

samples = 357
value = [6, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E84 <= 0.5
gini = 0.837

samples = 356
value = [5, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E82 <= 0.5
gini = 0.836

samples = 355
value = [4, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E85 <= 0.5
gini = 0.835

samples = 354
value = [3, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E100 <= 0.5
gini = 0.835

samples = 353
value = [2, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E60 <= 0.5
gini = 0.834

samples = 352
value = [1, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E345 <= 0.5
gini = 0.833

samples = 351
value = [0, 53, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [1, 0, 0, 0, 0, 0, 0]
class = alpha

E566 <= 0.5
gini = 0.833

samples = 350
value = [0, 52, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E120 <= 0.5
gini = 0.833

samples = 349
value = [0, 51, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E229 <= 0.5
gini = 0.832

samples = 348
value = [0, 50, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E445 <= 0.5
gini = 0.832

samples = 347
value = [0, 49, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E539 <= 0.5
gini = 0.832

samples = 346
value = [0, 48, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E459 <= 0.5
gini = 0.832

samples = 345
value = [0, 47, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E115 <= 0.5
gini = 0.832

samples = 344
value = [0, 46, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E347 <= 0.5
gini = 0.832

samples = 343
value = [0, 45, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E434 <= 0.5
gini = 0.831

samples = 342
value = [0, 44, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E506 <= 0.5
gini = 0.831

samples = 341
value = [0, 43, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E486 <= 0.5
gini = 0.831

samples = 340
value = [0, 42, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E466 <= 0.5
gini = 0.831

samples = 339
value = [0, 41, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E18 <= 0.5
gini = 0.83

samples = 338
value = [0, 40, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E536 <= 0.5
gini = 0.83

samples = 337
value = [0, 39, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E517 <= 0.5
gini = 0.83

samples = 336
value = [0, 38, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E119 <= 0.5
gini = 0.829

samples = 335
value = [0, 37, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E379 <= 0.5
gini = 0.829

samples = 334
value = [0, 36, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E20 <= 0.5
gini = 0.828

samples = 333
value = [0, 35, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E131 <= 0.5
gini = 0.828

samples = 332
value = [0, 34, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E554 <= 0.5
gini = 0.828

samples = 331
value = [0, 33, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E353 <= 0.5
gini = 0.827

samples = 330
value = [0, 32, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E238 <= 0.5
gini = 0.827

samples = 329
value = [0, 31, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E341 <= 0.5
gini = 0.826

samples = 328
value = [0, 30, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E299 <= 0.5
gini = 0.826

samples = 327
value = [0, 29, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E337 <= 0.5
gini = 0.825

samples = 326
value = [0, 28, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E230 <= 0.5
gini = 0.825

samples = 325
value = [0, 27, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E349 <= 0.5
gini = 0.824

samples = 324
value = [0, 26, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E130 <= 0.5
gini = 0.823

samples = 323
value = [0, 25, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E348 <= 0.5
gini = 0.823

samples = 322
value = [0, 24, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E125 <= 0.5
gini = 0.822

samples = 321
value = [0, 23, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E447 <= 0.5
gini = 0.821

samples = 320
value = [0, 22, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E334 <= 0.5
gini = 0.821

samples = 319
value = [0, 21, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E36 <= 0.5
gini = 0.82

samples = 318
value = [0, 20, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E117 <= 0.5
gini = 0.819

samples = 317
value = [0, 19, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E59 <= 0.5
gini = 0.819

samples = 316
value = [0, 18, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E578 <= 0.5
gini = 0.818

samples = 315
value = [0, 17, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E374 <= 0.5
gini = 0.817

samples = 314
value = [0, 16, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E116 <= 0.5
gini = 0.816

samples = 313
value = [0, 15, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E37 <= 0.5
gini = 0.815

samples = 312
value = [0, 14, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E556 <= 0.5
gini = 0.814

samples = 311
value = [0, 13, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E56 <= 0.5
gini = 0.813

samples = 310
value = [0, 12, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E446 <= 0.5
gini = 0.812

samples = 309
value = [0, 11, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E124 <= 0.5
gini = 0.811

samples = 308
value = [0, 10, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E468 <= 0.5
gini = 0.81

samples = 307
value = [0, 9, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E118 <= 0.5
gini = 0.809

samples = 306
value = [0, 8, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E465 <= 0.5
gini = 0.808

samples = 305
value = [0, 7, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E351 <= 0.5
gini = 0.807

samples = 304
value = [0, 6, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E507 <= 0.5
gini = 0.806

samples = 303
value = [0, 5, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E444 <= 0.5
gini = 0.805

samples = 302
value = [0, 4, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E339 <= 0.5
gini = 0.803

samples = 301
value = [0, 3, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E346 <= 0.5
gini = 0.802

samples = 300
value = [0, 2, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E126 <= 0.5
gini = 0.801

samples = 299
value = [0, 1, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E371 <= 0.5
gini = 0.8

samples = 298
value = [0, 0, 58, 61, 64, 59, 56]

class = gamma

gini = 0.0
samples = 1

value = [0, 1, 0, 0, 0, 0, 0]
class = beta

E144 <= 0.5
gini = 0.799

samples = 297
value = [0, 0, 58, 61, 64, 59, 55]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E268 <= 0.5
gini = 0.799

samples = 296
value = [0, 0, 58, 61, 64, 59, 54]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E358 <= 0.5
gini = 0.799

samples = 295
value = [0, 0, 58, 61, 64, 59, 53]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E264 <= 0.5
gini = 0.799

samples = 294
value = [0, 0, 58, 61, 64, 59, 52]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E503 <= 0.5
gini = 0.799

samples = 293
value = [0, 0, 58, 61, 64, 59, 51]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E508 <= 0.5
gini = 0.799

samples = 292
value = [0, 0, 58, 61, 64, 59, 50]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E333 <= 0.5
gini = 0.799

samples = 291
value = [0, 0, 58, 61, 64, 59, 49]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E361 <= 0.5
gini = 0.798

samples = 290
value = [0, 0, 58, 61, 64, 59, 48]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E291 <= 0.5
gini = 0.798

samples = 289
value = [0, 0, 58, 61, 64, 59, 47]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E363 <= 0.5
gini = 0.798

samples = 288
value = [0, 0, 58, 61, 64, 59, 46]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E301 <= 0.5
gini = 0.797

samples = 287
value = [0, 0, 58, 61, 64, 59, 45]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E302 <= 0.5
gini = 0.797

samples = 286
value = [0, 0, 58, 61, 64, 59, 44]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E286 <= 0.5
gini = 0.797

samples = 285
value = [0, 0, 58, 61, 64, 59, 43]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E283 <= 0.5
gini = 0.796

samples = 284
value = [0, 0, 58, 61, 64, 59, 42]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E570 <= 0.5
gini = 0.796

samples = 283
value = [0, 0, 58, 61, 64, 59, 41]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E305 <= 0.5
gini = 0.796

samples = 282
value = [0, 0, 58, 61, 64, 59, 40]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E232 <= 0.5
gini = 0.795

samples = 281
value = [0, 0, 58, 61, 64, 59, 39]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E281 <= 0.5
gini = 0.795

samples = 280
value = [0, 0, 58, 61, 64, 59, 38]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E231 <= 0.5
gini = 0.794

samples = 279
value = [0, 0, 58, 61, 64, 59, 37]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E257 <= 0.5
gini = 0.794

samples = 278
value = [0, 0, 58, 61, 64, 59, 36]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E279 <= 0.5
gini = 0.793

samples = 277
value = [0, 0, 58, 61, 64, 59, 35]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E246 <= 0.5
gini = 0.792

samples = 276
value = [0, 0, 58, 61, 64, 59, 34]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E325 <= 0.5
gini = 0.792

samples = 275
value = [0, 0, 58, 61, 64, 59, 33]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E364 <= 0.5
gini = 0.791

samples = 274
value = [0, 0, 58, 61, 64, 59, 32]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E332 <= 0.5
gini = 0.79

samples = 273
value = [0, 0, 58, 61, 64, 59, 31]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E370 <= 0.5
gini = 0.79

samples = 272
value = [0, 0, 58, 61, 64, 59, 30]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E275 <= 0.5
gini = 0.789

samples = 271
value = [0, 0, 58, 61, 64, 59, 29]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E270 <= 0.5
gini = 0.788

samples = 270
value = [0, 0, 58, 61, 64, 59, 28]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E277 <= 0.5
gini = 0.787

samples = 269
value = [0, 0, 58, 61, 64, 59, 27]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E278 <= 0.5
gini = 0.786

samples = 268
value = [0, 0, 58, 61, 64, 59, 26]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E282 <= 0.5
gini = 0.786

samples = 267
value = [0, 0, 58, 61, 64, 59, 25]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E515 <= 0.5
gini = 0.785

samples = 266
value = [0, 0, 58, 61, 64, 59, 24]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E373 <= 0.5
gini = 0.784

samples = 265
value = [0, 0, 58, 61, 64, 59, 23]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E516 <= 0.5
gini = 0.783

samples = 264
value = [0, 0, 58, 61, 64, 59, 22]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E362 <= 0.5
gini = 0.782

samples = 263
value = [0, 0, 58, 61, 64, 59, 21]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E367 <= 0.5
gini = 0.781

samples = 262
value = [0, 0, 58, 61, 64, 59, 20]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E245 <= 0.5
gini = 0.779

samples = 261
value = [0, 0, 58, 61, 64, 59, 19]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E276 <= 0.5
gini = 0.778

samples = 260
value = [0, 0, 58, 61, 64, 59, 18]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E143 <= 0.5
gini = 0.777

samples = 259
value = [0, 0, 58, 61, 64, 59, 17]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E360 <= 0.5
gini = 0.776

samples = 258
value = [0, 0, 58, 61, 64, 59, 16]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E280 <= 0.5
gini = 0.775

samples = 257
value = [0, 0, 58, 61, 64, 59, 15]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E8 <= 0.5
gini = 0.773

samples = 256
value = [0, 0, 58, 61, 64, 59, 14]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E263 <= 0.5
gini = 0.772

samples = 255
value = [0, 0, 58, 61, 64, 59, 13]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E262 <= 0.5
gini = 0.771

samples = 254
value = [0, 0, 58, 61, 64, 59, 12]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E266 <= 0.5
gini = 0.769

samples = 253
value = [0, 0, 58, 61, 64, 59, 11]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E544 <= 0.5
gini = 0.768

samples = 252
value = [0, 0, 58, 61, 64, 59, 10]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E312 <= 0.5
gini = 0.766

samples = 251
value = [0, 0, 58, 61, 64, 59, 9]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E331 <= 0.5
gini = 0.764

samples = 250
value = [0, 0, 58, 61, 64, 59, 8]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E366 <= 0.5
gini = 0.763

samples = 249
value = [0, 0, 58, 61, 64, 59, 7]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E294 <= 0.5
gini = 0.761

samples = 248
value = [0, 0, 58, 61, 64, 59, 6]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E292 <= 0.5
gini = 0.759

samples = 247
value = [0, 0, 58, 61, 64, 59, 5]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E368 <= 0.5
gini = 0.757

samples = 246
value = [0, 0, 58, 61, 64, 59, 4]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E293 <= 0.5
gini = 0.756

samples = 245
value = [0, 0, 58, 61, 64, 59, 3]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E478 <= 0.5
gini = 0.754

samples = 244
value = [0, 0, 58, 61, 64, 59, 2]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E359 <= 0.5
gini = 0.752

samples = 243
value = [0, 0, 58, 61, 64, 59, 1]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E561 <= 0.5
gini = 0.75

samples = 242
value = [0, 0, 58, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 0, 1]
class = omicron

E563 <= 0.5
gini = 0.75

samples = 241
value = [0, 0, 57, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E255 <= 0.5
gini = 0.749

samples = 240
value = [0, 0, 56, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E169 <= 0.5
gini = 0.749

samples = 239
value = [0, 0, 55, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E513 <= 0.5
gini = 0.749

samples = 238
value = [0, 0, 54, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E251 <= 0.5
gini = 0.749

samples = 237
value = [0, 0, 53, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E533 <= 0.5
gini = 0.749

samples = 236
value = [0, 0, 52, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E502 <= 0.5
gini = 0.748

samples = 235
value = [0, 0, 51, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E113 <= 0.5
gini = 0.748

samples = 234
value = [0, 0, 50, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E44 <= 0.5
gini = 0.748

samples = 233
value = [0, 0, 49, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E560 <= 0.5
gini = 0.747

samples = 232
value = [0, 0, 48, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E318 <= 0.5
gini = 0.747

samples = 231
value = [0, 0, 47, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E497 <= 0.5
gini = 0.746

samples = 230
value = [0, 0, 46, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E571 <= 0.5
gini = 0.746

samples = 229
value = [0, 0, 45, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E252 <= 0.5
gini = 0.745

samples = 228
value = [0, 0, 44, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E509 <= 0.5
gini = 0.745

samples = 227
value = [0, 0, 43, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E16 <= 0.5
gini = 0.744

samples = 226
value = [0, 0, 42, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E153 <= 0.5
gini = 0.744

samples = 225
value = [0, 0, 41, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E55 <= 0.5
gini = 0.743

samples = 224
value = [0, 0, 40, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E329 <= 0.5
gini = 0.742

samples = 223
value = [0, 0, 39, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E464 <= 0.5
gini = 0.741

samples = 222
value = [0, 0, 38, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E562 <= 0.5
gini = 0.741

samples = 221
value = [0, 0, 37, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E500 <= 0.5
gini = 0.74

samples = 220
value = [0, 0, 36, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E53 <= 0.5
gini = 0.739

samples = 219
value = [0, 0, 35, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E308 <= 0.5
gini = 0.738

samples = 218
value = [0, 0, 34, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E564 <= 0.5
gini = 0.737

samples = 217
value = [0, 0, 33, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E112 <= 0.5
gini = 0.736

samples = 216
value = [0, 0, 32, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E32 <= 0.5
gini = 0.735

samples = 215
value = [0, 0, 31, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E68 <= 0.5
gini = 0.734

samples = 214
value = [0, 0, 30, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E479 <= 0.5
gini = 0.732

samples = 213
value = [0, 0, 29, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E210 <= 0.5
gini = 0.731

samples = 212
value = [0, 0, 28, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E167 <= 0.5
gini = 0.73

samples = 211
value = [0, 0, 27, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E33 <= 0.5
gini = 0.728

samples = 210
value = [0, 0, 26, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E480 <= 0.5
gini = 0.727

samples = 209
value = [0, 0, 25, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E284 <= 0.5
gini = 0.726

samples = 208
value = [0, 0, 24, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E577 <= 0.5
gini = 0.724

samples = 207
value = [0, 0, 23, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E250 <= 0.5
gini = 0.722

samples = 206
value = [0, 0, 22, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E111 <= 0.5
gini = 0.721

samples = 205
value = [0, 0, 21, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E51 <= 0.5
gini = 0.719

samples = 204
value = [0, 0, 20, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E50 <= 0.5
gini = 0.717

samples = 203
value = [0, 0, 19, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E546 <= 0.5
gini = 0.715

samples = 202
value = [0, 0, 18, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E396 <= 0.5
gini = 0.713

samples = 201
value = [0, 0, 17, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E200 <= 0.5
gini = 0.711

samples = 200
value = [0, 0, 16, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E108 <= 0.5
gini = 0.709

samples = 199
value = [0, 0, 15, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E505 <= 0.5
gini = 0.707

samples = 198
value = [0, 0, 14, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E254 <= 0.5
gini = 0.705

samples = 197
value = [0, 0, 13, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E35 <= 0.5
gini = 0.702

samples = 196
value = [0, 0, 12, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E473 <= 0.5
gini = 0.7

samples = 195
value = [0, 0, 11, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E54 <= 0.5
gini = 0.697

samples = 194
value = [0, 0, 10, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E52 <= 0.5
gini = 0.695

samples = 193
value = [0, 0, 9, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E4 <= 0.5
gini = 0.692

samples = 192
value = [0, 0, 8, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E443 <= 0.5
gini = 0.689

samples = 191
value = [0, 0, 7, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E234 <= 0.5
gini = 0.686

samples = 190
value = [0, 0, 6, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E105 <= 0.5
gini = 0.683

samples = 189
value = [0, 0, 5, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E253 <= 0.5
gini = 0.68

samples = 188
value = [0, 0, 4, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E328 <= 0.5
gini = 0.677

samples = 187
value = [0, 0, 3, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E109 <= 0.5
gini = 0.673

samples = 186
value = [0, 0, 2, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E102 <= 0.5
gini = 0.67

samples = 185
value = [0, 0, 1, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E529 <= 0.5
gini = 0.666

samples = 184
value = [0, 0, 0, 61, 64, 59, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 1, 0, 0, 0, 0]
class = delta

E576 <= 0.5
gini = 0.666

samples = 183
value = [0, 0, 0, 61, 64, 58, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E390 <= 0.5
gini = 0.666

samples = 182
value = [0, 0, 0, 61, 64, 57, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E197 <= 0.5
gini = 0.666

samples = 181
value = [0, 0, 0, 61, 64, 56, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E381 <= 0.5
gini = 0.665

samples = 180
value = [0, 0, 0, 61, 64, 55, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E70 <= 0.5
gini = 0.665

samples = 179
value = [0, 0, 0, 61, 64, 54, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E38 <= 0.5
gini = 0.665

samples = 178
value = [0, 0, 0, 61, 64, 53, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E272 <= 0.5
gini = 0.664

samples = 177
value = [0, 0, 0, 61, 64, 52, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E247 <= 0.5
gini = 0.664

samples = 176
value = [0, 0, 0, 61, 64, 51, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E188 <= 0.5
gini = 0.663

samples = 175
value = [0, 0, 0, 61, 64, 50, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E527 <= 0.5
gini = 0.663

samples = 174
value = [0, 0, 0, 61, 64, 49, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E180 <= 0.5
gini = 0.662

samples = 173
value = [0, 0, 0, 61, 64, 48, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E198 <= 0.5
gini = 0.661

samples = 172
value = [0, 0, 0, 61, 64, 47, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E181 <= 0.5
gini = 0.66

samples = 171
value = [0, 0, 0, 61, 64, 46, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E175 <= 0.5
gini = 0.659

samples = 170
value = [0, 0, 0, 61, 64, 45, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E187 <= 0.5
gini = 0.659

samples = 169
value = [0, 0, 0, 61, 64, 44, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E11 <= 0.5
gini = 0.658

samples = 168
value = [0, 0, 0, 61, 64, 43, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E574 <= 0.5
gini = 0.656

samples = 167
value = [0, 0, 0, 61, 64, 42, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E522 <= 0.5
gini = 0.655

samples = 166
value = [0, 0, 0, 61, 64, 41, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E462 <= 0.5
gini = 0.654

samples = 165
value = [0, 0, 0, 61, 64, 40, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E298 <= 0.5
gini = 0.653

samples = 164
value = [0, 0, 0, 61, 64, 39, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E179 <= 0.5
gini = 0.651

samples = 163
value = [0, 0, 0, 61, 64, 38, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E383 <= 0.5
gini = 0.65

samples = 162
value = [0, 0, 0, 61, 64, 37, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E192 <= 0.5
gini = 0.648

samples = 161
value = [0, 0, 0, 61, 64, 36, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E191 <= 0.5
gini = 0.647

samples = 160
value = [0, 0, 0, 61, 64, 35, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E530 <= 0.5
gini = 0.645

samples = 159
value = [0, 0, 0, 61, 64, 34, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E178 <= 0.5
gini = 0.643

samples = 158
value = [0, 0, 0, 61, 64, 33, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E467 <= 0.5
gini = 0.641

samples = 157
value = [0, 0, 0, 61, 64, 32, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E189 <= 0.5
gini = 0.639

samples = 156
value = [0, 0, 0, 61, 64, 31, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E385 <= 0.5
gini = 0.637

samples = 155
value = [0, 0, 0, 61, 64, 30, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E525 <= 0.5
gini = 0.635

samples = 154
value = [0, 0, 0, 61, 64, 29, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E519 <= 0.5
gini = 0.633

samples = 153
value = [0, 0, 0, 61, 64, 28, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E190 <= 0.5
gini = 0.63

samples = 152
value = [0, 0, 0, 61, 64, 27, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E534 <= 0.5
gini = 0.628

samples = 151
value = [0, 0, 0, 61, 64, 26, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E13 <= 0.5
gini = 0.625

samples = 150
value = [0, 0, 0, 61, 64, 25, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E12 <= 0.5
gini = 0.622

samples = 149
value = [0, 0, 0, 61, 64, 24, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E470 <= 0.5
gini = 0.619

samples = 148
value = [0, 0, 0, 61, 64, 23, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E73 <= 0.5
gini = 0.616

samples = 147
value = [0, 0, 0, 61, 64, 22, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E186 <= 0.5
gini = 0.613

samples = 146
value = [0, 0, 0, 61, 64, 21, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E314 <= 0.5
gini = 0.609

samples = 145
value = [0, 0, 0, 61, 64, 20, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E202 <= 0.5
gini = 0.606

samples = 144
value = [0, 0, 0, 61, 64, 19, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E433 <= 0.5
gini = 0.602

samples = 143
value = [0, 0, 0, 61, 64, 18, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E573 <= 0.5
gini = 0.598

samples = 142
value = [0, 0, 0, 61, 64, 17, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E518 <= 0.5
gini = 0.594

samples = 141
value = [0, 0, 0, 61, 64, 16, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E395 <= 0.5
gini = 0.59

samples = 140
value = [0, 0, 0, 61, 64, 15, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E176 <= 0.5
gini = 0.585

samples = 139
value = [0, 0, 0, 61, 64, 14, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E235 <= 0.5
gini = 0.581

samples = 138
value = [0, 0, 0, 61, 64, 13, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E524 <= 0.5
gini = 0.576

samples = 137
value = [0, 0, 0, 61, 64, 12, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E72 <= 0.5
gini = 0.571

samples = 136
value = [0, 0, 0, 61, 64, 11, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E184 <= 0.5
gini = 0.566

samples = 135
value = [0, 0, 0, 61, 64, 10, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E512 <= 0.5
gini = 0.56

samples = 134
value = [0, 0, 0, 61, 64, 9, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E521 <= 0.5
gini = 0.554

samples = 133
value = [0, 0, 0, 61, 64, 8, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E526 <= 0.5
gini = 0.549

samples = 132
value = [0, 0, 0, 61, 64, 7, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E183 <= 0.5
gini = 0.542

samples = 131
value = [0, 0, 0, 61, 64, 6, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E182 <= 0.5
gini = 0.536

samples = 130
value = [0, 0, 0, 61, 64, 5, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E380 <= 0.5
gini = 0.529

samples = 129
value = [0, 0, 0, 61, 64, 4, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E199 <= 0.5
gini = 0.522

samples = 128
value = [0, 0, 0, 61, 64, 3, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E71 <= 0.5
gini = 0.515

samples = 127
value = [0, 0, 0, 61, 64, 2, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E177 <= 0.5
gini = 0.508

samples = 126
value = [0, 0, 0, 61, 64, 1, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E404 <= 0.5
gini = 0.5

samples = 125
value = [0, 0, 0, 61, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 0, 1, 0]
class = mu

E162 <= 0.5
gini = 0.499

samples = 124
value = [0, 0, 0, 60, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E432 <= 0.5
gini = 0.499

samples = 123
value = [0, 0, 0, 59, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E399 <= 0.5
gini = 0.499

samples = 122
value = [0, 0, 0, 58, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E211 <= 0.5
gini = 0.498

samples = 121
value = [0, 0, 0, 57, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E165 <= 0.5
gini = 0.498

samples = 120
value = [0, 0, 0, 56, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E415 <= 0.5
gini = 0.497

samples = 119
value = [0, 0, 0, 55, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E407 <= 0.5
gini = 0.496

samples = 118
value = [0, 0, 0, 54, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E417 <= 0.5
gini = 0.496

samples = 117
value = [0, 0, 0, 53, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E532 <= 0.5
gini = 0.495

samples = 116
value = [0, 0, 0, 52, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E163 <= 0.5
gini = 0.494

samples = 115
value = [0, 0, 0, 51, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E215 <= 0.5
gini = 0.492

samples = 114
value = [0, 0, 0, 50, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E160 <= 0.5
gini = 0.491

samples = 113
value = [0, 0, 0, 49, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E472 <= 0.5
gini = 0.49

samples = 112
value = [0, 0, 0, 48, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E403 <= 0.5
gini = 0.488

samples = 111
value = [0, 0, 0, 47, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E204 <= 0.5
gini = 0.487

samples = 110
value = [0, 0, 0, 46, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E157 <= 0.5
gini = 0.485

samples = 109
value = [0, 0, 0, 45, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E398 <= 0.5
gini = 0.483

samples = 108
value = [0, 0, 0, 44, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E158 <= 0.5
gini = 0.481

samples = 107
value = [0, 0, 0, 43, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E435 <= 0.5
gini = 0.478

samples = 106
value = [0, 0, 0, 42, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E45 <= 0.5
gini = 0.476

samples = 105
value = [0, 0, 0, 41, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E216 <= 0.5
gini = 0.473

samples = 104
value = [0, 0, 0, 40, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E170 <= 0.5
gini = 0.471

samples = 103
value = [0, 0, 0, 39, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E430 <= 0.5
gini = 0.468

samples = 102
value = [0, 0, 0, 38, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E409 <= 0.5
gini = 0.464

samples = 101
value = [0, 0, 0, 37, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E322 <= 0.5
gini = 0.461

samples = 100
value = [0, 0, 0, 36, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E514 <= 0.5
gini = 0.457
samples = 99

value = [0, 0, 0, 35, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E437 <= 0.5
gini = 0.453
samples = 98

value = [0, 0, 0, 34, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E419 <= 0.5
gini = 0.449
samples = 97

value = [0, 0, 0, 33, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E306 <= 0.5
gini = 0.444
samples = 96

value = [0, 0, 0, 32, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E212 <= 0.5
gini = 0.44

samples = 95
value = [0, 0, 0, 31, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E425 <= 0.5
gini = 0.435
samples = 94

value = [0, 0, 0, 30, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E205 <= 0.5
gini = 0.429
samples = 93

value = [0, 0, 0, 29, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E421 <= 0.5
gini = 0.423
samples = 92

value = [0, 0, 0, 28, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E477 <= 0.5
gini = 0.417
samples = 91

value = [0, 0, 0, 27, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E106 <= 0.5
gini = 0.411
samples = 90

value = [0, 0, 0, 26, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E330 <= 0.5
gini = 0.404
samples = 89

value = [0, 0, 0, 25, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E474 <= 0.5
gini = 0.397
samples = 88

value = [0, 0, 0, 24, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E46 <= 0.5
gini = 0.389
samples = 87

value = [0, 0, 0, 23, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E487 <= 0.5
gini = 0.381
samples = 86

value = [0, 0, 0, 22, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E422 <= 0.5
gini = 0.372
samples = 85

value = [0, 0, 0, 21, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E155 <= 0.5
gini = 0.363
samples = 84

value = [0, 0, 0, 20, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E460 <= 0.5
gini = 0.353
samples = 83

value = [0, 0, 0, 19, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E531 <= 0.5
gini = 0.343
samples = 82

value = [0, 0, 0, 18, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E410 <= 0.5
gini = 0.332
samples = 81

value = [0, 0, 0, 17, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E420 <= 0.5
gini = 0.32

samples = 80
value = [0, 0, 0, 16, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E413 <= 0.5
gini = 0.308
samples = 79

value = [0, 0, 0, 15, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E431 <= 0.5
gini = 0.295
samples = 78

value = [0, 0, 0, 14, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E428 <= 0.5
gini = 0.281
samples = 77

value = [0, 0, 0, 13, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E307 <= 0.5
gini = 0.266
samples = 76

value = [0, 0, 0, 12, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E461 <= 0.5
gini = 0.25

samples = 75
value = [0, 0, 0, 11, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E412 <= 0.5
gini = 0.234
samples = 74

value = [0, 0, 0, 10, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E427 <= 0.5
gini = 0.216
samples = 73

value = [0, 0, 0, 9, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E405 <= 0.5
gini = 0.198
samples = 72

value = [0, 0, 0, 8, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E323 <= 0.5
gini = 0.178
samples = 71

value = [0, 0, 0, 7, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E397 <= 0.5
gini = 0.157
samples = 70

value = [0, 0, 0, 6, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E424 <= 0.5
gini = 0.134
samples = 69

value = [0, 0, 0, 5, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E429 <= 0.5
gini = 0.111
samples = 68

value = [0, 0, 0, 4, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E416 <= 0.5
gini = 0.086
samples = 67

value = [0, 0, 0, 3, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E418 <= 0.5
gini = 0.059
samples = 66

value = [0, 0, 0, 2, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

E414 <= 0.5
gini = 0.03

samples = 65
value = [0, 0, 0, 1, 64, 0, 0]

class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

gini = 0.0
samples = 64

value = [0, 0, 0, 0, 64, 0, 0]
class = gamma

gini = 0.0
samples = 1

value = [0, 0, 0, 1, 0, 0, 0]
class = epsilon

Figure 21: CART Variant Classification (10.28%) of Aligned Sequence One-hot-encodings
- the image was cropped showing only 82 leaves out of 341 shown (zoom in to see tree) -
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5.2.2 Protein Classification

Two types of protein classification were performed using CART. The difference in each analysis was

the data used. The first analysis used the GenSLM embedding data, while the second analysis used 28

components from the PCA reduction of the GenSLM embedding.

The CART classification task using the regular embedding correctly classified 100% of proteins, as seen

in Figure 22. This result demonstrates that the GenSLM algorithm effectively preserved the data. While

the tree looks complex with a tree depth of 25, there are 29 proteins to classify which indicated that the tree

is not over-fit. There are several possible reasons why the CART classification worked better for proteins

than variants. One explanation could be due to the way the protein data was embedded and structured.

By embedding the proteins from 582 sequences and then further expanding each sequence variant into 29

additional rows (for each protein), the feature matrix for proteins was significantly enlarged to 16,878 rows

(582 * 29 = 16,849). The large increase in the number of rows provides more data which might have

provided more useful information for accurately classifying proteins. Another possible explanation is that

proteins differ more in their genomic characteristics than variants do. For instance, different Covid proteins

have vastly different amounts of nucleotides. The protein ‘nsp13’ has 39 nucleotides while ‘nsp3’ has 5,835

nucleotides. On the other hand, the CART variant classification task was more difficult because the sequence

length of each embedded genome were all of the same length17. Inherently groups are easier to classify when

they naturally differ. There is a lot of natural variation in protein nucleotides compared to whole genomes.

For classification using the PCA reduced feature matrix, as seen in Figure 23, the classification rate

is still 100%, and only using 28 dimensions instead of GenSLM’s 512. This finding indicates that further

dimension reduction is possible within the GenSLM embedding without impacting classification performance,

highlighting its redundancy. Thus, while GenSLM scores favourably in terms of separability and preservation

of information, the GenSLM embedding is still redundant.

17As shown by the vertical line in Figure 6.
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E258 <= -0.027
gini = 0.965

samples = 11814
value = [394, 403, 407, 412, 417, 399, 413, 409, 412, 415

414, 419, 406, 400, 415, 391, 401, 440, 395, 401
398, 417, 405, 419, 406, 396, 404, 412, 394]

class = M

gini = 0.0
samples = 419

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 419, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp12

True

E484 <= -0.031
gini = 0.964

samples = 11395
value = [394, 403, 407, 412, 417, 399, 413, 409, 412, 415

414, 0, 406, 400, 415, 391, 401, 440, 395, 401
398, 417, 405, 419, 406, 396, 404, 412, 394]

class = M

False

gini = 0.0
samples = 419

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 419, 0, 0, 0, 0

0]
class = Orf7a

E242 <= -0.003
gini = 0.963

samples = 10976
value = [394, 403, 407, 412, 417, 399, 413, 409, 412, 415

414, 0, 406, 400, 415, 391, 401, 440, 395, 401
398, 417, 405, 0, 406, 396, 404, 412, 394]

class = M

E276 <= -0.005
gini = 0.75

samples = 1679
value = [0, 0, 0, 0, 0, 0, 0, 0, 412, 0, 0, 0, 0, 0

415, 0, 0, 440, 0, 0, 0, 0, 0, 0, 0, 0, 0
412, 0]
class = M

E12 <= 0.017
gini = 0.957

samples = 9297
value = [394, 403, 407, 412, 417, 399, 413, 409, 0, 415

414, 0, 406, 400, 0, 391, 401, 0, 395, 401, 398
417, 405, 0, 406, 396, 404, 0, 394]

class = nsp5

E393 <= -0.002
gini = 0.667

samples = 1239
value = [0, 0, 0, 0, 0, 0, 0, 0, 412, 0, 0, 0, 0, 0

415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 412
0]

class = nsp15

gini = 0.0
samples = 440

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 440, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = M

gini = 0.0
samples = 415

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp15

E288 <= 0.003
gini = 0.5

samples = 824
value = [0, 0, 0, 0, 0, 0, 0, 0, 412, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 412
0]

class = nsp9

gini = 0.0
samples = 412

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 412

0]
class = Orf9c

gini = 0.0
samples = 412

value = [0, 0, 0, 0, 0, 0, 0, 0, 412, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp9

E206 <= 0.02
gini = 0.955

samples = 8880
value = [394, 403, 407, 412, 417, 399, 413, 409, 0, 415

414, 0, 406, 400, 0, 391, 401, 0, 395, 401, 398
0, 405, 0, 406, 396, 404, 0, 394]

class = nsp5

gini = 0.0
samples = 417

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 417, 0, 0, 0, 0, 0, 0

0]
class = Orf3b

E445 <= 0.029
gini = 0.952

samples = 8463
value = [394, 403, 407, 412, 0, 399, 413, 409, 0, 415, 414

0, 406, 400, 0, 391, 401, 0, 395, 401, 398, 0
405, 0, 406, 396, 404, 0, 394]

class = nsp10

gini = 0.0
samples = 417

value = [0, 0, 0, 0, 417, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp5

E443 <= -0.027
gini = 0.95

samples = 8048
value = [394, 403, 407, 412, 0, 399, 413, 409, 0, 0, 414

0, 406, 400, 0, 391, 401, 0, 395, 401, 398, 0
405, 0, 406, 396, 404, 0, 394]

class = nsp11

gini = 0.0
samples = 415

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 415, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp10

gini = 0.0
samples = 414

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 414, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp11

E211 <= -0.033
gini = 0.947

samples = 7634
value = [394, 403, 407, 412, 0, 399, 413, 409, 0, 0, 0, 0

406, 400, 0, 391, 401, 0, 395, 401, 398, 0, 405
0, 406, 396, 404, 0, 394]

class = nsp7

gini = 0.0
samples = 413

value = [0, 0, 0, 0, 0, 0, 413, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp7

E98 <= -0.028
gini = 0.944

samples = 7221
value = [394, 403, 407, 412, 0, 399, 0, 409, 0, 0, 0, 0

406, 400, 0, 391, 401, 0, 395, 401, 398, 0, 405
0, 406, 396, 404, 0, 394]

class = nsp4

gini = 0.0
samples = 412

value = [0, 0, 0, 412, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp4

E432 <= 0.04
gini = 0.941

samples = 6809
value = [394, 403, 407, 0, 0, 399, 0, 409, 0, 0, 0, 0
406, 400, 0, 391, 401, 0, 395, 401, 398, 0, 405

0, 406, 396, 404, 0, 394]
class = nsp8

E413 <= -0.021
gini = 0.937

samples = 6400
value = [394, 403, 407, 0, 0, 399, 0, 0, 0, 0, 0, 0
406, 400, 0, 391, 401, 0, 395, 401, 398, 0, 405

0, 406, 396, 404, 0, 394]
class = nsp3

gini = 0.0
samples = 409

value = [0, 0, 0, 0, 0, 0, 0, 409, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp8

gini = 0.0
samples = 407

value = [0, 0, 407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp3

E491 <= -0.017
gini = 0.933

samples = 5993
value = [394, 403, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 406

400, 0, 391, 401, 0, 395, 401, 398, 0, 405, 0
406, 396, 404, 0, 394]

class = nsp13

gini = 0.0
samples = 406

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 406, 0, 0, 0

0]
class = Orf7b

E261 <= 0.023
gini = 0.929

samples = 5587
value = [394, 403, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 406
400, 0, 391, 401, 0, 395, 401, 398, 0, 405, 0, 0

396, 404, 0, 394]
class = nsp13

E110 <= 0.002
gini = 0.923

samples = 5181
value = [394, 403, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0
400, 0, 391, 401, 0, 395, 401, 398, 0, 405, 0, 0

396, 404, 0, 394]
class = Orf6

gini = 0.0
samples = 406

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 406, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp13

gini = 0.0
samples = 405

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 405, 0, 0, 0, 0, 0

0]
class = Orf6

E324 <= -0.017
gini = 0.917

samples = 4776
value = [394, 403, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0
400, 0, 391, 401, 0, 395, 401, 398, 0, 0, 0, 0

396, 404, 0, 394]
class = Orf9b

gini = 0.0
samples = 404

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 404, 0

0]
class = Orf9b

E404 <= -0.036
gini = 0.909

samples = 4372
value = [394, 403, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0
400, 0, 391, 401, 0, 395, 401, 398, 0, 0, 0, 0

396, 0, 0, 394]
class = nsp2

gini = 0.0
samples = 403

value = [0, 403, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp2

E238 <= -0.029
gini = 0.9

samples = 3969
value = [394, 0, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0
400, 0, 391, 401, 0, 395, 401, 398, 0, 0, 0, 0

396, 0, 0, 394]
class = E

gini = 0.0
samples = 401

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = N

E69 <= -0.012
gini = 0.889

samples = 3568
value = [394, 0, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0
400, 0, 391, 401, 0, 395, 0, 398, 0, 0, 0, 0

396, 0, 0, 394]
class = E

gini = 0.0
samples = 401

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = E

E238 <= -0.022
gini = 0.875

samples = 3167
value = [394, 0, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0

400, 0, 391, 0, 0, 395, 0, 398, 0, 0, 0, 0
396, 0, 0, 394]
class = nsp14

gini = 0.0
samples = 400

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 400
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp14

E464 <= -0.008
gini = 0.857

samples = 2767
value = [394, 0, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0, 0

0, 391, 0, 0, 395, 0, 398, 0, 0, 0, 0, 396, 0
0, 394]

class = nsp6

gini = 0.0
samples = 399

value = [0, 0, 0, 0, 0, 399, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp6

E44 <= 0.004
gini = 0.833

samples = 2368
value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 391, 0, 0, 395, 0, 398, 0, 0, 0, 0, 396, 0

0, 394]
class = Orf3a

E71 <= 0.031
gini = 0.8

samples = 1970
value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 391, 0, 0, 395, 0, 0, 0, 0, 0, 0, 396, 0
0, 394]

class = Orf8b

gini = 0.0
samples = 398

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 398, 0, 0, 0, 0, 0, 0, 0

0]
class = Orf3a

E11 <= 0.002
gini = 0.75

samples = 1574
value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 391, 0, 0, 395, 0, 0, 0, 0, 0, 0, 0, 0, 0
394]

class = S

gini = 0.0
samples = 396

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 396, 0, 0

0]
class = Orf8b

gini = 0.0
samples = 395

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 395, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = S

E284 <= -0.03
gini = 0.667

samples = 1179
value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 391, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
394]

class = nsp1

gini = 0.0
samples = 394

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

394]
class = Orf10

E318 <= -0.004
gini = 0.5

samples = 785
value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 391, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0]

class = nsp1

gini = 0.0
samples = 394

value = [394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp1

gini = 0.0
samples = 391

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 391, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp16

Figure 22: CART Protein Classification (100%) for Aligned Sequence Embeddings (581 patients)
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5.2 Extrinsic evaluation – 5.2.2 Protein Classification Results

PC_24 <= 6.472
gini = 0.965

samples = 11814
value = [425, 414, 395, 411, 422, 418, 382, 423, 404, 385

416, 401, 403, 419, 396, 413, 408, 398, 395, 423
422, 426, 404, 388, 394, 408, 407, 411, 403]

class = Orf3b

PC_14 <= 8.145
gini = 0.964

samples = 11388
value = [425, 414, 395, 411, 422, 418, 382, 423, 404, 385

416, 401, 403, 419, 396, 413, 408, 398, 395, 423
422, 0, 404, 388, 394, 408, 407, 411, 403]

class = nsp1

True

gini = 0.0
samples = 426

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 426, 0, 0, 0, 0, 0, 0

0]
class = Orf3b

False

PC_18 <= -9.737
gini = 0.963

samples = 10963
value = [0, 414, 395, 411, 422, 418, 382, 423, 404, 385

416, 401, 403, 419, 396, 413, 408, 398, 395, 423
422, 0, 404, 388, 394, 408, 407, 411, 403]

class = nsp8

gini = 0.0
samples = 425

value = [425, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp1

gini = 0.0
samples = 423

value = [0, 0, 0, 0, 0, 0, 0, 423, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp8

PC_10 <= -11.994
gini = 0.962

samples = 10540
value = [0, 414, 395, 411, 422, 418, 382, 0, 404, 385, 416

401, 403, 419, 396, 413, 408, 398, 395, 423, 422
0, 404, 388, 394, 408, 407, 411, 403]

class = N

gini = 0.0
samples = 423

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 423, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = N

PC_12 <= -8.193
gini = 0.96

samples = 10117
value = [0, 414, 395, 411, 422, 418, 382, 0, 404, 385, 416

401, 403, 419, 396, 413, 408, 398, 395, 0, 422, 0
404, 388, 394, 408, 407, 411, 403]

class = nsp5

gini = 0.0
samples = 422

value = [0, 0, 0, 0, 422, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp5

PC_14 <= 6.082
gini = 0.958

samples = 9695
value = [0, 414, 395, 411, 0, 418, 382, 0, 404, 385, 416

401, 403, 419, 396, 413, 408, 398, 395, 0, 422, 0
404, 388, 394, 408, 407, 411, 403]

class = Orf3a

PC_16 <= 8.238
gini = 0.956

samples = 9273
value = [0, 414, 395, 411, 0, 418, 382, 0, 404, 385, 416

401, 403, 419, 396, 413, 408, 398, 395, 0, 0, 0
404, 388, 394, 408, 407, 411, 403]

class = nsp14

gini = 0.0
samples = 422

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 422, 0, 0, 0, 0, 0, 0, 0

0]
class = Orf3a

PC_5 <= 8.937
gini = 0.955

samples = 8854
value = [0, 414, 395, 411, 0, 418, 382, 0, 404, 385, 416

401, 403, 0, 396, 413, 408, 398, 395, 0, 0, 0
404, 388, 394, 408, 407, 411, 403]

class = nsp6

gini = 0.0
samples = 419

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 419
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp14

PC_5 <= 6.737
gini = 0.952

samples = 8436
value = [0, 414, 395, 411, 0, 0, 382, 0, 404, 385, 416

401, 403, 0, 396, 413, 408, 398, 395, 0, 0, 0
404, 388, 394, 408, 407, 411, 403]

class = nsp11

gini = 0.0
samples = 418

value = [0, 0, 0, 0, 0, 418, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp6

PC_10 <= -4.185
gini = 0.95

samples = 8020
value = [0, 414, 395, 411, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 413, 408, 398, 395, 0, 0, 0, 404
388, 394, 408, 407, 411, 403]

class = nsp2

gini = 0.0
samples = 416

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 416, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp11

gini = 0.0
samples = 414

value = [0, 414, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp2

PC_27 <= 5.923
gini = 0.947

samples = 7606
value = [0, 0, 395, 411, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 413, 408, 398, 395, 0, 0, 0, 404
388, 394, 408, 407, 411, 403]

class = nsp16

PC_14 <= -9.25
gini = 0.944

samples = 7193
value = [0, 0, 395, 411, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 408, 398, 395, 0, 0, 0, 404, 388
394, 408, 407, 411, 403]

class = nsp4

gini = 0.0
samples = 413

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 413, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp16

gini = 0.0
samples = 411

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 411

0]
class = Orf9c

PC_14 <= 4.051
gini = 0.941

samples = 6782
value = [0, 0, 395, 411, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 408, 398, 395, 0, 0, 0, 404, 388
394, 408, 407, 0, 403]

class = nsp4

PC_25 <= -8.575
gini = 0.937

samples = 6371
value = [0, 0, 395, 0, 0, 0, 382, 0, 404, 385, 0, 401
403, 0, 396, 0, 408, 398, 395, 0, 0, 0, 404, 388

394, 408, 407, 0, 403]
class = E

gini = 0.0
samples = 411

value = [0, 0, 0, 411, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp4

gini = 0.0
samples = 408

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 408, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = E

PC_22 <= -8.33
gini = 0.933

samples = 5963
value = [0, 0, 395, 0, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 404, 388
394, 408, 407, 0, 403]

class = Orf8b

gini = 0.0
samples = 408

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 408, 0, 0

0]
class = Orf8b

PC_20 <= -8.581
gini = 0.929

samples = 5555
value = [0, 0, 395, 0, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 404, 388
394, 0, 407, 0, 403]
class = Orf9b

gini = 0.0
samples = 407

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 407, 0

0]
class = Orf9b

PC_11 <= -8.382
gini = 0.923

samples = 5148
value = [0, 0, 395, 0, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 404, 388
394, 0, 0, 0, 403]
class = nsp9

gini = 0.0
samples = 404

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 404, 0, 0, 0, 0, 0

0]
class = Orf6

PC_21 <= -8.086
gini = 0.917

samples = 4744
value = [0, 0, 395, 0, 0, 0, 382, 0, 404, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 0, 388
394, 0, 0, 0, 403]
class = nsp9

gini = 0.0
samples = 404

value = [0, 0, 0, 0, 0, 0, 0, 0, 404, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp9

PC_2 <= -8.476
gini = 0.909

samples = 4340
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 0, 388
394, 0, 0, 0, 403]
class = nsp13

gini = 0.0
samples = 403

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

403]
class = Orf10

PC_4 <= -9.667
gini = 0.9

samples = 3937
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 401

403, 0, 396, 0, 0, 398, 395, 0, 0, 0, 0, 388
394, 0, 0, 0, 0]
class = nsp13

gini = 0.0
samples = 403

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 403, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp13

PC_16 <= -4.03
gini = 0.889

samples = 3534
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 401, 0

0, 396, 0, 0, 398, 395, 0, 0, 0, 0, 388, 394
0, 0, 0, 0]

class = nsp12

gini = 0.0
samples = 401

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp12

PC_27 <= 0.848
gini = 0.875

samples = 3133
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0

0, 396, 0, 0, 398, 395, 0, 0, 0, 0, 388, 394
0, 0, 0, 0]
class = M

PC_12 <= 2.681
gini = 0.857

samples = 2735
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0

0, 396, 0, 0, 0, 395, 0, 0, 0, 0, 388, 394, 0
0, 0, 0]

class = nsp15

gini = 0.0
samples = 398

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 398, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = M

PC_17 <= 4.007
gini = 0.833

samples = 2339
value = [0, 0, 395, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0

0, 0, 0, 0, 0, 395, 0, 0, 0, 0, 388, 394, 0
0, 0, 0]

class = nsp3

gini = 0.0
samples = 396

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
396, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp15

PC_14 <= -2.052
gini = 0.8

samples = 1944
value = [0, 0, 0, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0, 0

0, 0, 0, 0, 395, 0, 0, 0, 0, 388, 394, 0, 0
0, 0]

class = S

gini = 0.0
samples = 395

value = [0, 0, 395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp3

gini = 0.0
samples = 395

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 395, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = S

PC_21 <= 3.262
gini = 0.75

samples = 1549
value = [0, 0, 0, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 388, 394, 0, 0, 0
0]

class = Orf7b

PC_12 <= 0.598
gini = 0.667

samples = 1155
value = [0, 0, 0, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 388, 0, 0, 0, 0
0]

class = Orf7a

gini = 0.0
samples = 394

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 394, 0, 0, 0

0]
class = Orf7b

PC_16 <= 0.68
gini = 0.5

samples = 767
value = [0, 0, 0, 0, 0, 0, 382, 0, 0, 385, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0]

class = nsp10

gini = 0.0
samples = 388

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 388, 0, 0, 0, 0

0]
class = Orf7a

gini = 0.0
samples = 382

value = [0, 0, 0, 0, 0, 0, 382, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp7

gini = 0.0
samples = 385

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 385, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0]
class = nsp10

Figure 23: CART Protein Classification (100%) of 29 PCA Components (581 patients)
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Conclusion

6 Conclusion

This study aimed to assess the quality of GenSLMs embeddings through intrinsic and extrinsic evalu-

ations. It focused on characterizing the embeddings in terms of redundancy, separability, and information

preservation using established methods. The results demonstrated multiple favorable aspects of the GenSLM

embedding alongside several suboptimal outcomes. GenSLM performed well in classifying variants and pro-

teins when using the learner CART with classification rates of 97.71% and 100%, respectively. Strikingly,

for variant classification with CART, there was a +87.43% difference in the classification rate between

the GenSLM embedding and the One-Hot-Encoded versions of the feature matrix. In addition, GenSLM

performed very highly for separability. However, less favorable aspects resulted from the preservation of

information and redundancy analyses. Distance matrices showed that fine scale differences between whole

genomes were lost in the embedding transformation process. Furthermore, in comparing continuous and

discrete KL divergence, GenSLM distorted the genetic distance of Delta and Mu variants from the Wuhan

reference. Additionally, GenSLM achieved only modest success in preserving semantic distance and also

displayed considerable dimensional redundancy, both of which are suboptimal outcomes.

Although GenSLM’s embeddings excel in terms of separability and downstream task performance, these

results are specific to whole genome and protein-focused DNA sequence analyses. Additionally, no other

neural network embedding algorithms were compared to GenSLM, nor were alternative learners besides

CART employed for evaluating classification tasks. For future research, benchmarking GenSLM are rec-

ommended against other neural network embedding algorithms like DNABERT2 and HyenaDNA. Future

research should also include tasks assessing whole genome data such as variant classification and more sen-

sitive analyses like nucleotide frequency regression. A comprehensive benchmark across various algorithms

would provide practical insights for practitioners to choose the most suitable algorithm for their specific

needs.
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8.1 Figures
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Figure 24: Density Plots of of 581 Plus Reference Embedding Vectors

Figure 25: Embedding Pipelines
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Figure 26: Hamming Distance of Aligned Alpha Proteins to Wuhan Reference Sequence
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Figure 27: Hamming Distance of Aligned Beta Proteins to Wuhan Reference Sequence
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Figure 28: Hamming Distance of Aligned Gamma Proteins to Wuhan Reference Sequence
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Figure 29: Hamming Distance of Aligned Delta Proteins to Wuhan Reference Sequence

54



8.1 Figures Appendices

Figure 30: Hamming Distance of Aligned Epsilon Proteins to Wuhan Reference Sequence
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Figure 31: Hamming Distance of Aligned Omicron Proteins to Wuhan Reference Sequence
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Figure 32: Hamming Distance of Aligned Mu Proteins to Wuhan Reference Sequence
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8.2 Code Appendices

8.2 Code

8.2.1 Pre-Processing

1 import argparse

2 import h5py

3 import pandas as pd

4

5 #### PARSING PIPED ARGUMENTS ####

6 desc r ip t i on_text = (

7 " Sc r i p t f o r l oade r . f e a th e r f i l e o f dataframe o f g i s a i d sequences and then "

8 "wrangles df to a l i s t o f sequences index ing the pro t e in type by the ARRAY_JOB_ID"

9 )

10 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=desc r ip t i on_text )

11 par s e r . add_argument (

12 "−in " ,

13 "−−f e a th e r I n " ,

14 type=str ,

15 r equ i r ed=True ,

16 help="Path to the input f e a th e r f i l e with o r i g i n a l DNA sequences . " ,

17 )

18 par s e r . add_argument (

19 "−out" ,

20 "−−hdf5OutputPath" ,

21 type=str ,

22 r equ i r ed=True ,

23 help="The root Path to save the output sequences in HDF5 format . i e / user / f i l e /" ,

24 )

25 par s e r . add_argument (

26 "−aid " ,

27 "−−arrayId " ,

28 type=int ,

29 r equ i r ed=True ,

30 help=" adjusted array job id . This value indexes the dataframe column a l l ow ing d i f f e r e n t p ro t e i n s to

get d i f f e r e n t jobs " ,

31 )

32 args = par se r . parse_args ( )

33 prot ien_df = pd . read_feather ( args . f e a th e r I n )

34 p ro t e i n s = [ ' nsp1 ' , ' nsp2 ' , ' nsp3 ' , ' nsp4 ' , ' nsp5 ' , ' nsp6 ' , ' nsp7 ' , ' nsp8 ' , ' nsp9 ' , ' nsp10 ' , ' nsp11 ' , '

nsp12 ' , ' nsp13 ' , ' nsp14 ' , ' nsp15 ' , ' nsp16 ' , 'E ' , 'M' , 'S ' , 'N ' , ' Orf3a ' , ' Orf3b ' , ' Orf6 ' , ' Orf7a ' , '

Orf7b ' , ' Orf8b ' , ' Orf9b ' , ' Orf9c ' , ' Orf10 ' ]

35

36 protein_df_single_p = prot ien_df [ p r o t e i n s [ args . ar rayId ] ] . t o l i s t ( )

37 DNA = protein_df_single_p

38

39 # Write the mutated sequences to an HDF5 f i l e :

40 with h5py . F i l e ( args . hdf5OutputPath , "w" ) as hdf :

41 hdf . c reate_dataset ( " sequence " , data=DNA)

42

43 print ( f "Written to { args . hdf5OutputPath}" )

Listing 1: Protein Pre-processing Script - protein_preproc.py
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8.2 Code – 8.2.1 Pre-Processing Appendices

1 import argparse

2 import h5py

3 import pandas as pd

4

5 #### PARSING PIPED ARGUMENTS ####

6 desc r ip t i on_text = (

7 " Sc r i p t f o r l oade r . f e a th e r f i l e o f dataframe o f g i s a i d sequences and then "

8 "wrangles df to a l i s t o f sequences index ing the var i ant type by the ARRAY_JOB_ID"

9 )

10 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=desc r ip t i on_text )

11 par s e r . add_argument (

12 "−in " ,

13 "−−f e a th e r I n " ,

14 type=str ,

15 r equ i r ed=True ,

16 help="Path to the input f e a th e r f i l e with o r i g i n a l DNA sequences . " ,

17 )

18 par s e r . add_argument (

19 "−out" ,

20 "−−hdf5OutputPath" ,

21 type=str ,

22 r equ i r ed=True ,

23 help="The root Path to save the output sequences in HDF5 format . i e / user / f i l e /" ,

24 )

25 par s e r . add_argument (

26 "−aid " ,

27 "−−arrayId " ,

28 type=int ,

29 r equ i r ed=True ,

30 help=" adjusted array job id . This value indexes the o r fCon f i g . yml a l l ow ing d i f f e r e n t va r i an t s to get

d i f f e r e n t jobs " ,

31 )

32 args = par se r . parse_args ( )

33 var iant_df = pd . read_feather ( args . f e a th e r I n )

34 va r i an t s = [ " alpha" , " beta " , "gamma" , " de l t a " , " ep s i l o n " , "omicron" , "mu" , "lambda" ]

35

36 variant_df_single_v = variant_df [ var iant_df [ " var i ant " ] == var i an t s [ args . ar rayId ] ]

37 variant_df_single_v = variant_df_single_v [ " sequence " ]

38 var iant_l i s t_s ing l e_v = variant_df_single_v . t o l i s t ( )

39 DNA = var iant_l i s t_s ing l e_v

40

41 # Write the mutated sequences to an HDF5 f i l e :

42 with h5py . F i l e ( args . hdf5OutputPath , "w" ) as hdf :

43 hdf . c reate_dataset ( " sequence " , data=DNA)

44

45 print ( f "Written to { args . hdf5OutputPath}" )

Listing 2: Variant Pre-processing Script - variant_preproc.py
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8.2.2 Embedding

1 #!/ bin/bash

2 #SBATCH −−account=mayocancerai

3 #SBATCH −−job−name=dhintz_proteins_npat_400_array

4 #SBATCH −−mail−type=ALL

5 #SBATCH −−mail−user=dhintz1@uwyo . edu

6 #SBATCH −−time=1−00:00:00

7 #SBATCH −−part i t ion=beartooth−hugemem

8 #SBATCH −−error=slurms/%x_%A. err

9 #SBATCH −−ntasks=1

10 #SBATCH −−cpus−per−task=1

11 #SBATCH −−array=0−28

12 #SBATCH −−mem=60G

13 #SBATCH −−output=/pfs/tc1/project /mayocancerai/GenSLM/job_array_out/arrays_ex01_%A_%a . out

14

15 GENSLM_PATH="/ p f s / tc1 / p r o j e c t /mayocancerai /GenSLM"

16 INPUT_FEATHER="${GENSLM_PATH}/ prote ins_al l_seqs_df . f e a th e r "

17 POST_PROC_HDF5_OUT="${GENSLM_PATH}/ data_protein / prot$ {SLURM_ARRAY_TASK_ID}_seq_400_patients . h5"

18 EMBEDDED_HDF5_OUT="${GENSLM_PATH}/ data_protein / prot$ {SLURM_ARRAY_TASK_ID}_emb_400_patients . h5"

19

20 module load arcc /1 .0 miniconda3 /23 . 11 . 0

21 conda a c t i v a t e / p f s / tc1 / p r o j e c t /mayocancerai /mayocancerai

22

23 # Exp l i c i t l y use the Python interpreter from the spec i f i c Conda environment

24 PYTHON_EXEC="/ p f s / tc1 / p r o j e c t /mayocancerai /mayocancerai / bin /python"

25

26 ${PYTHON_EXEC} ${GENSLM_PATH}/ prote in_preproc . py −in "${INPUT_FEATHER}" −out ${POST_PROC_HDF5_OUT} −−

arrayId ${SLURM_ARRAY_TASK_ID}

27 i f [ $? −ne 0 ] ; then

28 echo " Fa i l ed to execute prote in_preproc . py f o r Prote in ${SLURM_ARRAY_TASK_ID} . "

29 exit 1

30 f i

31

32 ${PYTHON_EXEC} ${GENSLM_PATH}/GenSLM. py −in ${POST_PROC_HDF5_OUT} −out ${EMBEDDED_HDF5_OUT}

33 i f [ $? −ne 0 ] ; then

34 echo " Fa i l ed to execute GenSLM. py f o r Prote in ${SLURM_ARRAY_TASK_ID} . "

35 exit 1

36 f i

37

38 echo "Emebedding f o r Prote in ${SLURM_ARRAY_TASK_ID} completed s u c c e s s f u l l y ! "

Listing 3: Protein Embedding Script - embed_prot_aj.sh
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1 #!/ bin/bash

2 #SBATCH −−account=mayocancerai

3 #SBATCH −−job−name=dhintz_varaints_npat_400_array

4 #SBATCH −−mail−type=ALL

5 #SBATCH −−mail−user=dhintz1@uwyo . edu

6 #SBATCH −−time=1−00:00:00

7 #SBATCH −−part i t ion=beartooth−hugemem

8 #SBATCH −−error=slurms/%x_%A. err

9 #SBATCH −−ntasks=1

10 #SBATCH −−cpus−per−task=1

11 #SBATCH −−array=0−7

12 #SBATCH −−mem=60G

13 #SBATCH −−output=/pfs/tc1/project /mayocancerai/GenSLM/job_array_out/arrays_ex01_%A_%a . out

14

15 GENSLM_PATH="/ p f s / tc1 / p r o j e c t /mayocancerai /GenSLM"

16 INPUT_FEATHER="${GENSLM_PATH}/ var iant_dfs . f e a th e r "

17 POST_PROC_HDF5_OUT="${GENSLM_PATH}/ data_variant /var$ {SLURM_ARRAY_TASK_ID}_seq_400_patients . h5"

18 EMBEDDED_HDF5_OUT="${GENSLM_PATH}/ data_variant /var${SLURM_ARRAY_TASK_ID}_emb_400_patients . h5"

19

20 module load arcc /1 .0 miniconda3 /23 . 11 . 0

21 conda a c t i v a t e / p f s / tc1 / p r o j e c t /mayocancerai /mayocancerai

22

23 # Exp l i c i t l y use the Python interpreter from the spec i f i c Conda environment

24 PYTHON_EXEC="/ p f s / tc1 / p r o j e c t /mayocancerai /mayocancerai / bin /python"

25

26 ${PYTHON_EXEC} ${GENSLM_PATH}/ var iant_preproc . py −in "${INPUT_FEATHER}" −out ${POST_PROC_HDF5_OUT} −−

arrayId ${SLURM_ARRAY_TASK_ID}

27 i f [ $? −ne 0 ] ; then

28 echo " Fa i l ed to execute var iant_preproc . py f o r Variant ${SLURM_ARRAY_TASK_ID} . "

29 exit 1

30 f i

31

32 ${PYTHON_EXEC} ${GENSLM_PATH}/GenSLM. py −in ${POST_PROC_HDF5_OUT} −out ${EMBEDDED_HDF5_OUT}

33 i f [ $? −ne 0 ] ; then

34 echo " Fa i l ed to execute GenSLM. py f o r Variant ${SLURM_ARRAY_TASK_ID} . "

35 exit 1

36 f i

37

38 echo "Emebedding f o r Variant ${SLURM_ARRAY_TASK_ID} completed s u c c e s s f u l l y ! "

Listing 4: Variant Embedding Script - embed_var_aj.sh

62



8.2 Code – 8.2.2 Embedding Appendices

1 #!/ usr/bin/env python

2 import argparse

3 import h5py

4 import numpy as np

5 from genslm import GenSLM, SequenceDataset

6 from torch . u t i l s . data import DataLoader

7 import torch

8 import os

9

10 desc r ip t i on_text = " Sc r i p t f o r embedding mRNA sequences us ing GenSLM and saving in HDF5 format . "

11 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=desc r ip t i on_text )

12 par s e r . add_argument ( '−in ' , '−−hdf5In ' , type=str , r equ i r ed=True , help= 'Path to the input HDF5 f i l e

conta in ing mRNA sequences . ' )

13 par s e r . add_argument ( '−out ' , '−−hdf5Out ' , type=str , d e f au l t=None , help= 'Path to save the embedded sequences

in HDF5 format . I f not provided , i t w i l l ove rwr i t e the input HDF5. ' )

14 args = par se r . parse_args ( )

15

16 model = GenSLM("genslm_25M_patric" , model_cache_dir="/ p ro j e c t /mayocancerai /GenSLM" ) # In i t i a l i z e GenSLM

17 model . eval ( )

18

19 de f embed_with_genslm ( seq ) :

20 datase t = SequenceDataset ( [ seq ] , model . seq_length , model . t ok en i z e r )

21 data loader = DataLoader ( dataset , batch_size=1)

22 with torch . no_grad ( ) :

23 for batch in data loader :

24 outputs = model ( batch [ " input_ids " ] , batch [ "attention_mask" ] , output_hidden_states=True )

25 emb = outputs . hidden_states [ 0 ] . detach ( ) . cpu ( ) . numpy( )

26 emb = np . mean(emb , ax i s =1)

27 return emb

28

29 embedded_sequences = [ ]

30 with h5py . F i l e ( args . hdf5In , ' r ' ) as hdf :

31 sequences = hdf [ ' sequence ' ] [ : ] # Assuming a l l sequences are stored in a dataset named ' sequence '

32 for seq_bytes in sequences :

33 seq = seq_bytes . decode ( ' utf −8 ' ) # Assuming sequences are stored as bytes

34 emb = embed_with_genslm ( seq )

35 embedded_sequences . append (emb)

36

37 embedded_sequences_array = np . vstack ( embedded_sequences ) # Convert l i s t of embeddings to a numpy array (n

x 512)

38 output_hdf5_path = args . hdf5Out

39

40 with h5py . F i l e ( output_hdf5_path , 'w ' ) as hdf : # Save the embedded sequences array to HDF5

41 hdf . c reate_dataset ( ' embedded_sequences ' , data=embedded_sequences_array )

42

43 pr in t ( f "Written to {output_hdf5_path}" )

Listing 5: Core GenSLM Embedding Script - GenSLM.py
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9 Glossary

• Amino Acids: Organic compounds that combine to form proteins, serving as the building blocks of

life.

• Bash Pipelines: A bash script or series of scripts part of a single execution that passes variables

and/or data between sub-shell environments, often combining multiple coding languages.

• BP (Base Pair): A unit consisting of two nucleotides on opposite complementary DNA or RNA

strands that are connected via hydrogen bonds.

• Codons: Triplets of nucleotides in mRNA that specify which amino acid will be added next during

protein synthesis.

• Gaps: In sequence alignments, spaces inserted to align sequences optimally; gaps can represent dele-

tions or insertions.

• Hamming’s Distance: A measure of the number of substitutions required to change one string into

another, used especially in genetics to determine the difference between sequences.

• High Coverage: In genomic sequencing, refers to the number of times a particular region of the

genome has been sequenced, indicating the reliability of the data.

• Learner: In the machine learning context, a learner refers to an algorithm or model that learns from

data to make predictions or decisions.

• MSA (Multiple Sequence Alignment): The alignment of three or more genomic sequences (pro-

tein, DNA, or RNA) to achieve maximal matching, used to identify regions of similarity that may

indicate functional, structural, or evolutionary relationships.

• Mutations: Changes in the nucleotide sequence of the genetic material of an organism, which may

alter the function or activity of gene products.

• NSP (Non-structural Protein): Proteins encoded by a virus that are not part of its structural

components but are crucial for its replication and usually for subverting the host’s immune response.

• Nucleotide: The basic building block of DNA and RNA, consisting of a base attached to a sugar-

phosphate backbone.
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• ORFs (Open Reading Frames): Sequences in nucleic acids that potentially encode proteins, starting

with a start codon and ending with a stop codon (also known as a coding region).

• Protein: Large biomolecules, or macromolecules, consisting of one or more long chains of amino acid

residues, essential for the structure, function, and regulation of the body’s cells, tissues, and organs.

• RNA (Ribonucleic Acid): A nucleic acid present in all living cells. Its principal role is to act as a

messenger carrying instructions from DNA for controlling the synthesis of proteins.

• SLURM Jobs Arrays: A feature in SLURM (a job scheduler for Linux) that allows submission of

multiple similar jobs with a single command using an array index.

• SP (Structural Protein): Proteins that form the structure of an organism, such as those making up

the cell cytoskeleton or a virus capsid.

• Whole Genomes: The complete set of DNA or RNA sequences of an organism, encompassing all its

genes (coding regions) and non-coding regions.
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